
WASHINGTON

Dear APPLE Enthusiast,

APPLE PI

Vol. l No. 5
June, 1979

I would like to express our thanks to Bernie Urban for all the work that he put
in as our "first president." He very unselfishly put in much time and effort into
getting the club up and running. In a less serious frame, Bernie - don't rest on
your laurels, we still need you!

We've had our first official elections now. I'm.sure I can speak for all the newly
elected officers when I extend our appreciation for the trust that you've given us.
However, I hope you still feel that this is your club. We can only be of service in
so far as each of you participate and are satisfied with what you get from the club.

I feel that this is only just a beginning. Good thin's start small and grow. I
see a number of areas for us to grow in: •

(I) Putting Washington Apple Pi on' a sounder financial footing. (This means
some form of dues and possible ads in the newsletter, cake sales? what-
ever ••••).

(2) Formation of special interest groups, either formally or informally
depending on how many people are interested. These groups could address
areas such as: hardware modifications, programming languages, educa
tional applications, business applications, telecommunications (Applenet?),
graphics and whatever else that members are interested in doing. Our
diversity is our strength here.

(3) Establishing a club library of programs and documentation. This should
include some form of standards so that for disk files, programming tech
niques, etc., each of us does not have to re-invent the wheel each time
we do some application.

(4) Continuing to help the newsletter mature into an interesting, current,
relevant and professional(?) record of the club's activities, of members'
articles, and of shared information.

Looking forward, I see a year filled with potentials, challenges, and opportuni
ties. I see us changing to meet our interests in ways we don't yet know. -- See
you at the next meeting.

John L. Moon

....

. ~ .'

-2-

DISK OPERATING SYSTJE (OOS) NQTFS, By Sandy Greenfarb

D!TRODUCTION: One thing this is not, is the ultimate reference on oos.
All I'i.edone was condense my own research into a short article with hopes
that it might provide some assistance to others about to go the same
route and possibly spur someone else to present his or her efforts in
writing.

~!CES: WOZPA.X, ''Using R~~JTS Routine", by Steve Wozniak.
CA.LL-A.P.P.L.~., t-::ar 79, "Disk Access Utility", by Dan Pa.ymar.
CALL-A. P. P.L. Z., A:pr-1-:ay 79, "Apple Disk Operating Syster.i", by Richard
F. Suitor.

GE'~ERAL: All number values are decimal unless otherwise stated. FollowinP"
the Apple standard, hexadecimal numbers are preceded with a dollar sign (S).
For new computer joun:.eymen (Since ~rou Olm a."'1 APPI.3 II, you have been
raised above the category of novice.), I'll explain a little about addresses.
In most computer situations, the first item is numbered 0 and succeeding
items are numbered relative to the first. Thus, the first byte or an Apple
is at address 0 and the first track on a diskette is number o. In fact, if
you've done any simple integer basic proeraT!".r.iing with a DD>~, you've used
this addressing without knowing it. The statement DD.:I A(3) does !'l2i say to
reserve an array of size 3, but says starting with A(O), reserve an array
whose last address is A(3). Try,equating and then printing. You'll find
that A(O), A(l), A(2), and A(3) are all legitimate members of the array.
Remember this type of addressing. The deeper you get into computers, the
more you'll find it.

Also, be aware of the standard internal re~resentation of addresses in
low byte/high byte format. I...l'l a two-byte machine address, the first b;yte
plus 256 tir1es the second byte value equals the actual machine address
being referenced. The deeper you get, the more you'll see this also.

DISKETTE: Each diskette may be thought or, as a phonograph record except
that the "grooves" of these records are unconnected. Tn computer terms,
the grooves are called tracks. Logical portions of tracks are called
sectors. As the disk is spinning, the Apple can locate and position
itself and read or write one specific sector or one specific track at a
time, similar but not identical to a magnetic tape read/write operation.

One diskette contains 3 5 tracks numbered 00 thru 34.
One track contains 13 sectors numbered 00 thru 12.
One sector contains 256 bytes.
403 sectors per diskette available for user files.

DOS reserves tracks oo, 01, and 02 for itself and reserves track 17 for
maintaining the OOS catalog. This explains why, even thouch there are
455 sectors on a diskette, only 403 are available.

FILES: Regardless of type, any user file established under DOS consists
of three distinct parts; cataloe entry, pointer sector, and data sectors.
These are oescribec later.

C\':1.\JPG: Track 17 of a IX'S diskette is reserved for the system cataloz.
3eve~ catalog entries, file names with associated data)can be stored in
each of 12 sectors starting with sector 12 and worldng down thru sector 1
as needed. NOTE: 12x7=84, the maximum number of files per diskette.

-3-

SECTOR MAP: In track 17, sector 0 is an essential part of the catalog
system I call the sector map. Starting with byte addresses 56/57 (the
57th/58th bytes of the sector) and ending with bytes 192/193, evecy
other pair of bytes describes which sectors in each track are still
available to DOS for writing. The first pair (56/57) represent track o.
Incrementing by 4, the next pair (6o/61) represent track 1, and so on

.thru byte pair 192/193 which represents track 34. From left to rifht,
the first 13 bits of each of these byte pairs indicate the status of a
sector. If the bit is o, tl:e sector is already in use and, if the bit
is 1, the sector is available for writing. TI1is is best explained by
example: Let bytes 76/77 = $07F8. Track number represented = ADDRS.SS
of first byte of pair divided by 4 minus 14. (76/4-14=5). This
represents track 5. Break the hexadecimal value down to binary and
label the first 13 bits from 12 to O. Hexar1ecima.l $07?8 becomes
binary 0000 0111 1111 1000.

0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0
12 11 10 09 OS 07 06 05 04 03 02 01 00 N/A ••••

This shows that in track 5 that sectors 12, 11 1 10 1 9, and 8 are already
being used by DOS. Sectors 7 thru 0 are still available for l1I'itin£.

CATALOG ENTRY: A catalog entry, reference to a file stored under oos, is
exactly 35 bytes lone. The catalog begins in sector 12 of track 17 and
continues downward thru sector 1 1 as more entry space is needed. Ea.ch
sector can hold up to 7 entries. The first entry begins in byte 11 of
each sector being used. Succeeding entries occur i~ 35 byte increments
until the sector is filled. Followine is the catalo[entry format:

&fte 00
Byte 01
Byte 02

- Address of track for pointer record.
- Address of sector for pointer record.
- File type according to the following table:

TYPS If file is If file is
FIL3 unlocked locked

Text •••••••••• $00 $80
Integer Basic. $01 ~.;81
Applesoft ••••• $02 $82
Binary •••••••• $04 ~84

Bytes 03/32 - File r~ame
Byte 33 - Nu.mber of sectors in file (includes 1 for pointer record.)
Byte 34 - zeros (possibly not used).

T'ne file name is a maximum of 30 characters, iLter.-!all:r left justi f'ied.
Any unused characters to the right of your assitJ1ed file name w:i.11 be
filled 1·1i th spaces, $AO.

FOINTER RECO:ID: The cataloe entry points to t.he pointer record. The
pointer record, in turn, poir:ts to every data record of the file. Starting
in byte pair 12/13 and continuing in sequence thru 1 less than the number
or sectors referenced in the catalog, is a track/sector pointer to each
data sector of the file.

DATA R.Ecx:>RDS: Data records or sectors contain the actual data or program
of the file. Depending on the type of file, the first several bytes may
contain additional control information.

2

-4-

For Integer Basic and Applesoft files, the first two bytes contain the
actual program length to be loaded. This byte count is in the standard
low/high format. Anyone taking the trouble to examine an Applesoft file
will observe that the cou.rit appears too high by 2. They should also
observe two extra zero bytes at the end of the file. The Applesoft
structure does require these bytes and they do belong as part of the file.

For a binary file, the first pair of bytes of the first record provide the
default BI.CAD address. The second pair represents the file length.

In text files, the first byte of the file is the first character of the
file, and so on.

~P.~R!l·3'.,.TS: In producing these notes, I ran several experiments. Sorr.e
reached worthy conclusion; others did not,. ! v:ill relate some ~vhich

mieht have sienificance.

1. The first pointer record is assigned to sector 12 of track lS. The
first data record will begin in sector 11 of track 18 and continue downward,
continuing in sector 12 of track 19 and so on. Once it reaches track 34 1
DOS will pick up in track 16 and work do~m thru track 3 (tracks 0-2 reserved).
It will then pick up its search for more space beginning again in track 18.
rr~itially, pointer records are assigned to sector 12 of the next unused
track, with a starting point of the last sector assie;ned by DOS accorcing
to the rotating algorithm. If a previous file hac been deleted, its space
~7ould still be ienored until the search had circled back to the empty space.
:-ot co::c'lusivel:t, but. :1 t a!-':.""e.~rs t!:at ~CS ~~rill ah!ays search out the
hi,:::1e1" rn'!bered sectors as firsJ corsirjeratj.or.. for ;x>inter recore.s.

2. 0:a:::i ~ir!g the di s!·:et 7,e afte~ n.elet.ins files brour:ht. sore s:i snifi C9..."1t
facts to lizht. Once DOS declares a sector as written in the sector map,
only a DELETE col71JTland (or I:~IT of course) reverses the status. Thus, if
one shocl.d modify a stored program and the new program would be smaller,
the preferred action would be to DELETE the old and then save the new. I
do mean, of course, this would only be done if the same name were retained.

3. Have you ever wondered why your last-saved DOS file is not last in the
list. :fuen a DELETE command is issued, DOS will take the catalog entry and
alter it. Byte 32 will become the value of byte 0 and then byte 0 will
become ~FF. Hypothetically byte 32 is altered to prevent file name
~ismatch and byte 0 is altered to tell !X)S that the entry space is again
available. Also, as all catalog entry space is initialized to zero, it
ap,ears DOS knm·1s it has· reached the end of the catalog at the end of the
assiened s;>ace or a strinc of zeros, whichever comes first.

4. Tne final experiment deals with writing a sector independent of the
003 file system. Some bnckerou.'1.d first. Builc wit.hin IX'S is Pl utility .
entitled "REA···/:'ffiITJ; TR..\CK/S:~CTOR" or RWTS, for short. This is an article
in itself. To continue, I set up the program and parameters necessary to
write a sector, specifically an unused one which still showed as a "1" on
the available sector map. I examined the track and sector map after my
write operation and noted that the data was there and that the sector map
remained unchanged. The impact of this I leave as a warning to RWT3 users.

-5-

LETTING IT ALL HANG OUT (THE GAME I/O,THAT IS)
y Susan Eickmeyer

Have you ever been the victim of the APPLE's game I/O? .
Like maybe you've been happily doodling with the light-pen or
game paddles, and then decided to run a program that needed your
joystick--you opened up the lid (after taking off any number of
pieces of junk or peripherals which were lying on top of the lid)
and carefully removed the 16-pin plug, then straightened out the
three pins you bent in the process, grabbed your joystick, or
whatever, and with inadequate light summoned your last bit of
patience trying to al ign the new plug to the invisible black holes
in the socket, and maybe even succeeding the first try. after all
of this you replaced the lid, the junk and whatever, and finally
were able to run your next program. You. probably thought that
APPLE could have come up with something better. They didn't, but
you can, and to prove that it can be done by just about any
clumsy kid, I even did it myself. Fortunately, I didn't need
to do all the thinking myself, since my knowledge of hardware
is extremely limited. I got a lot of help from Joe Zakar (my
boyfriend), who explained a lot of the workings of the varioHs
pins etc. to me. So, what I learned, I'll try to pass on.

First, if you don't want to read the rest of this article,
just turn in the Red Reference Book to the page where it explains
the game I/O pin. If you can understand it all, then this article
won't help you much, anyway. If you can't understand any of the
info, except where the socket is located, then you're on my level.

The first thing to realize, is that the paddles, and just about
any other peripheral, don't use all the pins on the plug. Most of
the pins aren't even wired. That brings up the question of why it
is necessary to tie up all your pins, if you only need three?
If you have a connector-box out, it isn't.

First we'll look at the pins individually, or in related groups.
We'll examine what each of these types of pins or groups does,
and then explain what you need to b~ing the socket out.

The first two pins we'll look at are pins 9 and 16. They are
easy to explain, because they aren't hooked up to anything--no-connection.
Hence, in case you haven't figured it out, they don't do anything,
either, maybe APPLE planned them for extending to a write-only memory.
If you're following me so far, we'll rush headlong into two other
pins, pin 1 and pin 8. Pin 1 is your connection to 5 volts positive
DC. This is one of several voltages produced by your APPLE's power
supply. This voltage is what will be utilized by the game paddles
to tell the APPLE what's going on. Pin 8 is ground. It is utilized,
among other things, by the switches and annunciator connections.

Now that we're down to 12 pins, I'll probally start getting tough
on you. The next set of pins are 6,7,10 and 11. These are the
PADDLE INPUTS. Finally we get to something useful. As soon as I can
get Joe to explain it to me, I'll tell you how the computer handles the
paddle inputs, but for now, let·a ju~t say that if you have a
variable resistance, otherwise known as a potentiometer, or "pot"
which is hooked up to the pin 1 (5V+) and to one of the game paddle
pins, the computer will read the resulting current flow as a number.
That gives you your paddle reading when you ask for it, say in
B~ShIC.fThhi~ forms our first real connection for the box, the paddles
eac o w ich needs a 5v connection, and a pin connection. '

-6-

All this is to say, that to run paddle one, not counting the
button, all the APPLE needs is pin 10 and 5v+ , or pin 1.
If you wanted to connect 4 paddles, you need just 5 pins,
the four pins which connect to the paddle locations in the
APPLE, and again, Sv+.

The switches, or buttons on your APPLE-supplied paddles, are
handled by three pins on the game I/O connector. These are pins
2,J,and·4. To run a button/switch, you need to use one of these
pins, and ground. These pins are connected, roughly speaking,
to addresses in memory,$C061, $C062, $0063. when your button is
pushed, it causes the high bit to be set at this location, and
results in a number larger than 127. (That's because the binary
form of the number at the address has eight digits, numbered
from 0 to 7, going from right to left. the higbest number that
can be expressed without using the leftmost digit is 127,
or 0111111 binary. 10000000 is 128 decimal. That leftmost digit
is the 'high bit').

For you people who like blinking lights, you can control them
by using the annunciator pins 12, 13, 14, 15. I personally have
never used them for anything, but as soon as something good comes up,
I'll let you know. Or maybe you'll let me know. In any case, I
will assume that you may want to control little lights or
some such thing in the future, and we will bring the annunciators
out into the box, too. · They require connections to the pin,
and, to be usable, to ground.

That leaves us just the pin 5. I am not going to bring it out
into the box as a separate jack, but it will still be accessible
from the box in one-·of the 2 16 pin sockets. A strobe, put simply,
just causes a signal, normally at a set level, to dip for just
a clock cycle whenever the associated memory location (004~) is
accessed. This may be used to trigger other hardware logic, or
act like an interupt.

NOW, the box! To build the box you need a box of some kind. I used
a 3X5 card file box. You will also need the following, most of which
you can get at Radio Shack.
·~- 12 phone jacks (I used 3 sets of 4 mounted._jacks-RCA phono type)

7 16-pin dip sockets
1 extender board for the dip socket (to make soldering easier)
4 rocker-type dip switches, 8 rockers each (also 16 pin)

a piece of perf board with .t: holes
wire, preferably 26-28 guage
solder

1 18-24 inch extender ribbon with 16 pin plugs on both ends
patience (not available at Radio Shack)

Each of the
of the jack
5Va 1/8
swoa 2/8
5 W1: 3/8
SW21 4/8

12 jacks will have
is f ollewed by the

PDL01 6/1
PDL11 10/1
PDL2a 7/~
PDLJ1 11/1

2 connections as follows {the 'name'
two connectons given as pin numbers)
~o 1~
~1 1~
AN2 13/8
~3 1~

\ @00 ooo
J~s l 00 0 00;0

I
soc1C.,..,- t=xr&~oe
AC.TU If<. .SIL£

-7-

~ ~ tlh ')
GrHPT:J

;$DC/IC.e/_$

~CK6r WtlfUN <;
To make our box , we will fitst wire the phono jacks.
-Wire together all jack terminals which will go to ground
-Wire together all jack terminals which will go to 5v
-Bring one wire out from the grounded terminals to ~±tender 'block' #8
-Bring one wire out from the 5v terminals to extender 'block'#l
-wire the remainder of the terminals to the blocks as indicated above

(the first number indicates the inner terminal of the jack)
-you will naw wire the six sockets for 16 pin extensions as followss

-place the six sockets into the perfboard. tape them in place
if necessary, since you will now turn the board over so the
pins are on top. Number the sockets RIGHT TO LEFT FROM 1 to 6.

-on each socket, the pins are numbered as followsson the right
side from top to bottom 1-2-3-4-5-6-7-8, and on the left side
from bottom to top 9-10-11-12-13-14-15-16. My convention from
here on out is to refer to socket 6, pin 8 as 6/8. Blocks on
the extender will be *8, and a wire connection noted as •
Thus to say that block 16 is wired to socket six,pin 16,~
I will simply type *16~6/16

;~E rO~NECTIONr/fg~~JlFOLLOWSs 2116~3/l *2~1~2 l/15 2/2 2/15 3/2
*3-1/3 1/14=:=2/3 2/14~3/3
*4~1/4 1/13 2/4 2/13-3/4
:6=1x{56 11

1
12=2

1
15 2/12=3/5

* ~ 1 11~2 6 2/11 3/6
7~1 7 1/10~2/7 2/10-3/7

*8~1/8 1/9 ~2/8 2/9 =3/8

*16 3/16
*15-3/15
*14-3/14
*13-3/13
*12=3/12
*11 3/11
*10=3/10
* 9_ 3/9

*1 . 4/1 4l16_3-£1 5/16 6/1 *16 6/16
*2= 4/2 4/.1 ~ 5'/. 2 5/1~-6/2 *15-6/15
*J_ 4/J 4/) -; 5/1 -6/J 4/ _5 J *14-6/14
*4 4/4 13 5/4 5/13-6/4 *13-6/13 -4;

~~F~~i 5/12-6/5 *12=6/12 :g- 4/g 5/11-6/6 *11 6/11
*7- 4/7 4/10-; 5/10-6/7 ~/9 =~1i *10-6/10
*6= 4/8 5/9 =6/8 *9 =6/9

This is the essential wiring. The ribbon extender plugs into your
apple and into the socket in the socket extender. ihe dip switches
can be used to turn the empty sockets on or off, so if you have
your game paddles plugged into one, and your lightpen into the
other, the APPLE wont get confused. You will have to pull the
plugs on the sockets if you aren't usine them, no big deal, since
that's exactly what j~cks are meant for:

For all of you who haven't the least idea how to build this thing
after reading this mess, just come to the next meeting, and
I'll have my box there for you to look2 at it.

CONVER TING PIMS FOR THE APPLE I(DISC by Nicholas B. Cirillo, M. D.
(NOV APPLE)

As an absolute computer novice, the six months that I have owned my APPLE II
have been full of learning experiences. Since my interests are in business applica
tions, I found myself looking for a good way to learn data base management con
cepts. I purchased some Osbourne books but they had little that I could learn at
my level of background. Then I came upon PIMS (Personal Information Management
System) by Madan L. Gupta, Scelbi Publications, Milford, Conn., at the recom
mendation of Tom Bowen at the Computer Hardware Store.

Although written for the TRS-80 with application to the PET 2001, it looked as
though I could make the conversion to the APPLE. I was well on the way to con
verting the program to tape storage on the APPLE, using the string store routine
in CONTACT 3, when my disk arrived. (Perhaps I will complete that conversion
and make it the subject of a future article.) It initially seemed as though the con
version would be simple, but in retrospect the "fixes are obscure enough to
share them.

It is worthwhile to discuss the way this program arranges data for storage.
The data are concatenated into long strings that are stored as units of a sequential
file. Spacers are appropriately placed in the compiling process and then used to
break the strings apart in a parsing routine after reloading. The first problem
that arose on my system was that the spacer, CHR$(126) - the "less than" symbol
in the second ASCil series, would return the upward arrow on the READ routine.
This was corrected by changing all the CHR$(126) to CHR$(94), which is the upward
arrow in the first ASCil series. These changes will be noted in order below. Some
additional changes were noted in a recent Kilobaud article and will be referenced.

-9-

Others were in an errata printed in my copy of PIMS and are also referenced
for completeness. There will be a complete LOAD and SAVE listing, since that
is where most of the conversion occurs.

CHANGES

70 PRINT CHR$(4); "NOMON I, C, O" (Note: Leave this line out at first and
watch how the routine works)

80 HOME
90 D$=" ": REM CONTROL DIN QUOTES (Note: Deletes TRS-80 ONERRGOTO

routine)
250 PRINT I
370 T$ = T$ + ";" +Tl$ (Note: This takes care of DOS recognizing the comma

as a separator. This was a major bug. Found it,
thanks to Bill Kennedy.)

960 change CHR$(126) to CHR$(94)
990 T$ = N$ + T$ + CHR${94) (Note: This is in the errata)
1210 GOTO 1330 (Note: The original line reference did not appear that it would work)
1260 GOTO 540 (Note: from Kilobaud article)
1440 change CHR$ (126) to CHR$(94)
Add 1675 T 1$ = " " (Note: from Kilobaud article)
1790 change CHR$ (126) to CHR$(94)
2260 it is the letter 0 (Note: from the errata)
2370 change GOSUB to GOTO (Note: from the errata)
2450 GOTO 540 (Note: from Kilobaud article)
2710 change CHR$(126) to CHR$(94)
Add 3115 PRINT .D$; "MON I, C, O" (See note to line 70)
Delete lines 3430 and 3440 unless you want to write an APPLESOFT II ONERRGOTO

routine.

LOAD ROUTINE

1890 REM LOAD FROM DISC
1910 INPUT "ENTER FILE NAME ";F$
1914 PRINT D$; "OPEN ";F$
1918 PRINT D$; ''READ '';F$
1930 J = -1
1940 J = J + 1
1950 INPUT T$
1960 IF T$ = "EOF" THEN 1990
1970 R$(J) = T$
1980 GOTO 1940
1990 T$ = R$(0)
2000 Tl$ = CHR$(94)
2010 GOSUB 3040
2020 FOR I = 0 TO 10
2030 N$(I) = B$(I)
2040 IF LEFT$(N$(I), 4) = "STOP" THEN 2060
2050 NEXT I
2055 I= I-1

-10-

2060 N = VAL(B$(I+ 1))
2065 FOR Z = 1 TO 5: B$(Z) = 11 11

: NEXT Z (Note: from Kilobaud)
2070 PRINT D$; "CLOSE "; F$
2075 GOTO 540

SAVE TO DISC ROUTINE

3180
3190
3200
3205
3210
3220
3230
3240
3250
3260
3270
3280
3290
3300
3310
3320
3325
3330
3335

REM SA VE TO DISC
INPUT "ENTER LABEL FOR FILE BEING SAVED "; F$
PRINT D$; ''OPEN 11

; F$
PRINT D$; "WRITE "; F$
T$ = 1100000": REM 5 ZEROES
FOR I= 1 TO 10
T$ = T$ + CHR$(94) + N${I)
T 1$ = LEFT$(N$(I), 4)
IF Ti$= "STOP" THEN 3270
NEXT I
T$ = T$ + CHR$(94) + STR$(N) + CHR${94)
PRINT T$
REM
FOR J = 1 TON
PRINT R$(J)
NEXT J
PRINT "EOF"
PRINT D$; II. ~<::LOSE 11;F$
RETURN

Finally, it is obvious that this program can be condensed by combining lines and
eliminating some of the REM lines. Be careful in the latter case since these lines are
frequently used as reference lines in GOTO and GOSUB statements. If the reader plans
to key in the code as a learning experience the compaction might be counterproductive.

Since I think my version has been debugged and is running (I have not tried the SUM
routine) a few simple files, I would be willing to make a cassette copy for anyone who
has purchased the book. I feel strongly about the rights of -program authors, so I will
insist on proof of purchase. In any case, without the book and its instructions and
demonstrations, the program will be of very limited value since it is not really self
prompting or internally documented. (4616 Ravensworth Road, Annandale, Va. 22203;
Telephone (703) 941-6366, Home (703) 323-6276)

SWEET 16, THE COMPUTER WITHIN THE COMPUTER. by John L. Moon

On page 96 of the Red Reference Manual, begins part of the Monitor listing of a
program called "APPLE-II PSEUDO MACHINE INTERPRETER" written by Steve
Wozniak and included in the ROM along with Integer Basic, the Monitor, and the
Floating Point Routines (see the newsletter Vol. 1, No. 4). Unfortunately, there
is very little (as in no) documentation as to what this program does. One of the
early issues of BYTE magazine (I've mislaid the date) had an article 11System Descrip
tion: The APPLE-II" by S. Wozniak that described the rationale for how he designed

-11-

the APPLE-II. In five paragraphs and two tables at the end of this article he put
the only documentation for Sweet 16 that I have found. (Supposedly, the WOZPAK
has some information on Sweet 16.) The article in BYTE is only approximately
correct. It must have been written before he actually finished writing the program
because there are a number of differences between the article and the way that
Sweet 16 actually works.

What is Sweet 16? As the title of this article suggests, it is a kind of computer
within a computer. Wozniak wrote a program that simulates a nonexistent 16-bit
computer. The name of this fictional (albeit usable) computer is Sweet 16. I have
written an instant assembler/ disassembler for Sweet 16 which I can give to anybody
that is interested at the next meeting, along with its documentation. In this article,
I'll just describe Sweet 16 itself. ·

Sweet 16 is just a computer program as implied by its implementation in ROM.
You turn on Sweet 16 by a JSR from a machine language program on the 6502, to
ROM address F689. Sweet 16 then assumes that the bytes stored immediately after
the JSR instruction are the beginning of the Sweet 16 instructions. There is a spe
cial Sweet 16 instruction that turns off Sweet 16 and returns to 6502 mode. The
original 6502 registers are saved and restored by Sweet 16 upon entry and exit into
some of the monitor low memory areas.

The first 32 bytes·of the APPLE's memory are used as sixteen 16-bit registers.
The registers are numbered 0 to F in hexadecimal. Register 0 (locations 0, 1) is
used as the accumulator for many of the Sweet 16 instructions. Register C (loca
tions $18, $19) is used as a stack pointer by the Sweet 16 subroutine call and return
instructions. Register D (locations $1A, $1B) is used as the destination of the sub
traction operation in the interpretation of a compare instruction. Register E
($IC, $1D) is used as a status register and Register F ($IE, $1F) is the program
counter for Sweet .16. Registers 1 through Bare available for general programming
usage. To interface to a Sweet 16 program, you can store data or pointers into the
Sweet I6 registers prior to turning Sweet 16 on, except for the program counter
register.

Sweet 16 has a very austere instructiai set. The instructions are mostly
oriented to doing memory moves, and pointer style addressing. It does support
16-bit addition and subtraction. Most opcodes are just one byte long. However,
since the instructions are interpreted, their speed is about 10 times slower than
6502 machine language. On the other hand, it is about 10-100 times faster than
Integer Basic.

The following table lists the opcodes of Sweet 16. I have also included with
it the mnemonics that are recognized by the assembler I wrote. A description of
the terminology of the table follows after the table.

-12-

Hex Assembler
Code Mnemonic Operands Action

00 RTN
01 BRA
02 BCC
03 BCS
04 BPL
05 BMI
06 BEQ
07 BNE
08 BNO
09 BNN
OA BRK
OB RTS
oc JSR
OD NOP
9E NOP
OF NOP
Ir SET
Zr TRA
3r TAR
4r LBI
Sr SBI
6r LDI
7r SDI
Br LBD
9r SBD
Ar ADD
Br SUB
Cr LDD
Dr CMP
Er INC
Fr DEC

Addr
Addr
Addr
Addr
Addr
Addr
Addr
Addr
Addr

Addr

r, value
r
r
r
r
r
r
r
r

r
r
r
r
r
r

Return to 6502 mode of operation
Unconditional relative branch (tlZ7)
Branch on carry clear (±127)
Branch on carry set (tl27)
Braa:h on plus (positive) (±127)
Branch on minus (negative) (±127)
Branch on equal "(zero) (±127)
Branch on not equal (not zero) (±127)
Branch on negative one ($FFFF) (±127)
Branch on not negative one (±127)
Break to Monitor
Return from subroutine
Jump to subroutine (within "t.127)
No opera_tion

Rr = value Sets Register r to value
RO= Rr Transfer Register r to Accumulator
Rr = RO Transfer Accumulator to Register r
RO= @Rr, Rr = Rr+l Load Byte Increment
@Rr = RO, Rr = Rr+l Store Byte Increment
RO = @Rr, Rr = Rr+Z Load Double Increment
@Rr = RO, Rr = Rr+2 Store Double Increment
Rr = Rr-1, RO= @Rr Load Byte Decrement
Rr = Rr-1, @Rr = RO Store Byte Decrement
RO = RO+Rr Add
RO = RO-Rr Sub
Rr = Rr-2., RO = @Rr Load Double Decrement
RD = RO-Rr, set status Compare (result to RD)
Rr = Rr+l Increment
Rr = Rr-1 Decrement

All of the above opcodes that have an operand of "r" or no operand at all are
just one byte in length. All the Branch opcodes including the JSR are two bytes in
length, with the second byte containing a relative offset just like a 6502 instruc
tion. The SET instruction is a total of three bytes long with the last two bytes
having the value. In most cases, I have selected as an opcode the 6502 mnemonic
that performs a (roughly) equivalent function if one exists. The abbreviations are
used as follows:

Addr
r
value
@

A relative address for a jump destination.
A register number from 0 to F for registers RO to RF.
A 16-bit value
Used to signify indirect addressing through a register; the contents of
the register are used as the address for loading or storing data.

Notes: LBI, LBD, SBI and SBD all use just the low order byte of the register; on

-13-

loads the upper byte will be zeroed. LDI, SDI and LDD fetch and store 16-bit
quantities.

As I said, the Sweet 16 interpreter is turned on with a JSR F689. The inter
preter instructions follow this JSR just as if they were more instructions (which
they are). To get back into 6502 mode, the Sweet 16 RTN instruction is executed.
Instructions that follow that RTN must be 6502 instructions. Many times it is
convenient to make the entire Sweet 16 routine a self-contained subroutine which
is callable from 6502 or Integer Basic. In this case, the routine can begin with
the Sweet 16 turnon call, and end with a 6502 return. An example is given below
with comments.

Hex Machine
Location Hex value

300 20 89 F6
303 11 00 04
306 12 00 04
309 13 EO 00
30C 23
30D 51
30E F2
30F 07 FC
311 00
312 60

Opcode

JSR F689
SET 1, 0400
SET 2, 0400
SET 3, OOEO
TRA 3
SBI 1
DEC 2
BNE 030C
RTN
RTN

Comments

Turns on Sweet 16
Rl = address of screen buffer
R2 = count of characters
R3 = ASCII blank
RO = ASCII blank
Store blank on screen
R2 = R2-l
Make all of screen blank
Return to 6502 mode
6502 return from subroutine

This example routine does the same thing as a CALL -936, but does it with a
CALL 768. It clears the screen.

1£ you have the S-C Assembler, you can find a number of uses for Sweet 16
within it. Disassemble portions of it looking for the JSR F689. Anything following
that is Sweet 16 until the 00 that means return to 6502. Next month I 111 talk about
writing a text processing program (including the text editor) for the APPLE.

HOW WOULD YOU LIKE TO "CLUSTER/ONE"? by Bernie Urban

At the last minute I decided to attend a portion of the Personal Computing
Festival in New York, and as a result I am able to honor my promise of providing
you with more information on the Nestar system. I have liberally borrowed from
the promotional literature provided to me by Dr. Harry J. Saal, President, Nes-
tar Systems Inc.

Cluster/One is a distributed computer system based on independent micros
connected together via a high-speed parallel data bus. There can be up to 15
stations comprised of a mixture of PETs, TRS-80s and APPLEs. This can be
doubled via their optional feature. Why such a system? It allows for the sharing
of expensive peripherals, e.g. a disk drive and a printer. I asked whether tab
lets, plotters and modems could also be added, and apparently they can. "A
Cluster/One system can be used in a drop-in computer center as a commercial

-14-

venture. Computer dealers can very effectively demonstrate and compa~e the
capabilities of the APPLE, PET and TRS-80 ••• " Educational uses abound. "Very
large software systems can be run ••• since one BASIC program can cause othe1·s
to be loaded from the disk and executed. This facility can be used for tutorial
applications ••• Whenever a change must be made to a program, only one copy
need be changed. After that, all users have access to the updated version." The
total cost of a system is "only a fraction of what a time sharing system costs."

"Nestar Systems produces the central Cluster/One system which contains two
disk drives, disk and·bus controllers, buffer memory and power supplies. The
unit costs $ · 4, 500 for the single disk version which holds 630 K bytes on-line. A
double sided version with 1. 2 M bytes costs an additional $500. The Cluster/One
console is another personal computer (PET ed.) which is used for starting and
monitoring the system and running utilities such as full or incremental disk back
ups. 11 There is more information in my materials, or you can call (415) 327-0125
or write to Nestar Systems Inc., 430 Sherman Ave., Palo Alto, Ca 94306.

THE NEW YORK PERSONAL COMPUTER FAIRE by Bernie Urban

It was mind-boggling. Interestingly, APPLE did not exhibit with the other
personal ·computers. Rather they chose to be with the big boys and pushed APPLE
as a business computer. I picked up extensive literature -- you're welcome to
browse through it at our next meeting. Here are some items of interest to
APPLE fans:

1. PASCAL will be available in the "third quarter of 1979". It will cost $495
but will supply you with all sorts of goodies and do away with the need for APPLE
SOFT ROM (incompatible). You can run in any of the three modes but you must
have 48K memory and one disk drive. PASCAL essentially gives you a 64 K RAM
system - the language card has 16K of write-protectable RAM and 2K ROM for
the Auto-Start. You get 5 diskettes including the Integer Basic, Applesoft
Extended Basic and PASCAL.

z. Did you say that llOK bytes of disk storage on-line is not enough for your
application? How would you like 10 M bytes of storage? For $4990, CORVUS
Systems, Inc., P.O. Box 1590, Cupertine, Ca 95014, will supply you with the
IMI 7710 "Winchester" disk drive with 280-16K intelligent controller, power
supply and APPLE interface card and associated software. Not enough? You can
add three more drives for a total of 40 megabytes!

3. You can add a Digi-kit-izer to your APPLE (a computer graphics input
device) for $499 plus $99 for the interface board. Check TALOS Systems, Inc.,
7419 E Helm Drive, Scottsdale, Ariz 85260 for this one. APPLE was using
their own version for business applications and for drawing color portraits at
the show. It can be used, given some appropriate character/pattern recognition
software, for teaching cursive writing.

4. I saw a plotter in operation but did not pick up any literature. It drew a
great picture of the APPLE logo using multicolor pens. Should have tried to

_:15-

draw our logo.

5. You can hook up your APPLE via a modem to Smart system, which for
$2. 75/hr for connect and CPU time (6 PM to 8 AM Eastern time, weekends and
holidays) you gain access to an electronic mail function, downloaded programs
for the APPLE, commercial data bases like UPI • You can program in FORTRAN,
COBOL, SUPERBASIC, PL/C and RPG and more. Check with Smart System,
1301 West Estes Avenue, Chicago, Ill. 60626.

6. I saw the COMPRINT Model 912 in operation. It looked good, operated
quietly and produced high quality print characters. This is due to their use of a
9 X 12 dot matrix to fill in greater detail. However, it was done on aluminized
paper. It is supposed to "Xerox" very well •. Your applications may call for
white bond or high quality print paper. Price for the COMPRINT is $560.

All you CAI fans come see me about news I picked up from Roger Cutler re
APPLE and education (at our next meeting).

MINUTES OF MEETING - 5/26/79

While waiting for latecomers we discussed several items. Superchip - Mark
Crosby prefers software version like screen machine. Sue Eickmeyer discussed
WOZPAK version - circuitry for lower case chip and software is available.
John Moon mentioned a deal between APPLE and Bell and Howell for educational
programs. Howard Richoux discussed the FORTH language put out by FORTH
Co., and Bernie Urban mentioned the burgeoning nationwide interest in setting
up an APPLE Network.

The group decided not to create a 4th member-at-large position for a "Green
Apple" (our Constitution calls for only 3), but we would have such a designee with
yet-to-be-·decided responsibilties and authority.

The election took place and our new officers are:
President - John Moon
Vice-President - Bernie Urban
Treasurer - Robert Peck
Secretary - Genevie Urban
Members-at-Large - Mark Crosby, Sue Eickmeyer and Sandy Greenfarb

The meeting adjourned to John Moon's 6502 Machine Language Course and to
the exchange of programs.

CALENDAR OF EVENTS

Date

June 25

June 28

Events/Meetings

Chesapeake Microcomputer Club
7:30 PM, Kahler Hall, Harpers Choice
Community Center, Columbia, Md.
NOV APPLE

For Further Info. Call

Mani Alexander
Off. 452-5232

.•. ~ . ->·"'--- ... ·--- --- •. . ' ·~,.

-16-

CALENDAR OF EVENTS

Date Events/Meetings For Further Info. Call

June ZS Chesapeake Microcomputer Club Mani Alexander
7:30 PM, Kahler Hall, Harpers Choice Off. 45Z-SZ3Z
Community Center, Columbia, Md.

June ZS NOVAPPLE Jim Nielsen
7:30 PM, Computerland, Tysons Corner Off. 693-7530

July 11 Assn. of Personal Computer Users Daphne Schor
7:30 Pm, Chevy Chase Library Off. 544-8530

@@
@ @
@ NEXT MEETING OF WASlilNGTON APPLE PI @

@ @
@ Saturday, June 23, 9:30 am @
@ @
@ GEORGE WASHINGTON UNIVERSITY @

@ Tompkins Hall, School of Engineering, Rm 206 @
@ 23rd & H Streets, NW @
@ @
@ Parking roulette, or in students' parking lot, if the chains are down. @

@ Convenient to Metro. @
@ @
@@

. '·
! •

