
<
/

/

' '

Wa1hington
Apple Pi
PO Box 345 11 Wash ington , DC 20034

$1.00

volume... l f epte...mber 1979 number 8

Officers

Pres i dent John Moon (202) 332-9102
Vice Pres i dent Bernard Urban (301) 229- 3458
Treasu re r Robert Peck (301) 770- 1954
Secret a ry Genevie Urban (301) 229-3458
News letter Staff:

Editor Bernard Urban (301) 229- 3458
Assoc iate Ed itor Mark Cros by (202) 488-1979

Progr am Libra ri an Davi d Morganstein (301) 474- 5768
Membe rs - at- Large Sue Ei ckmeyer (301) 490- 7627

Sandy Greenfarb (301) 674- 5982
Mark Crosby (202) 488- 1979

Contents

Pres i dent ' s Message 1
Mi nutes 1
Editorial - Berni e Urban 2
NIB BLES - tidb its of i nteresti ng i nformati on 2
Event Queue 3
MO DEMa ni a (update) 3
Internal Structure of Integer BASIC by Sandy Greenfarb 4
Calendars by John L. Moon 9
App lesoft Surpri se by Jim Kel ly 9
Membershi p Appli cati on 10
Hard & Soft Facts on the Seri al I / O by Susan Ei ckmeyer 11
Class ified Ads for Members 14
Commerci al Advert isi ng Rates 14
Auto-List and Count Filemaker by Howi e Mitchel l 15
So f tware Rev i ew - SubLOGIC' s 3-0 wonder 15

PRE.SIDE.nT'S mE.SSAGE_
Dear APPLE Enthusiast:

As is obvious , G~IU has some interest in APPLEs - they
own a dozen or so of them with more on order! They
use them in a number of courses , including introduc
tory programming (such as CSCI052) as well as some of
the more advanced courses . Thi s semester I'm taking
a couple of courses (and maybe someday I'l l get my
M.S .) that I especially arranged with the professors
beforehand in order to use my APPLE for the homework
and project assignments. One course is Interactive
Graphics, the other is on Digital Programming Sys terns.

I'm hoping that as a side benefit can use the
homework problems and projects as subjects for articles
in this newsletter (after all, I have to write them
up for class anyway). For example, in the Interactive
Graphics course, one of the key topics that will be
covered is a Standard Graphics system known as the
Core Graphics System. This system includes routines
for windowing, scaling, transformations, viewports
and all manner of other such graphics-oriented things .
I hope to end up with an implementation of the system
on the APPLE as well as some articles describing what
all those funny words mean.

In the Programming Systems course, the two home~iork
assignments will be to write an Assembler and a Re
locatable Loader. Not a trivial assignment! But
the present assemblers that I have access to on the
APPLE assemble a single source file in memory and
have no capability to link more than one program
together - something very useful if you would li ke to
mix and match your subroutines .

On the negative side, maybe all this is going to keep
me so busy that I won't have time to figure out which
end is up; well, at least it's on the APPLE so I can
do it at home! (Saves energy, is tax deductab le, etc .
etc .)

Bernie suggested a rather wild - largescale, but fas
cinating idea/project for the club - to set up and
run a Personal Computing Conference here in ':las hi ngton.
I'm staggered by the thought of it; but like I said,
fascinated . .. Anybody interested give it some thought
and see me or Bernie at the next meeting - 1·1hich, by
the way, has been changed to Saturday, September 29
due to a holiday conflict.

Hopefully I will have contacted Pete Kendrichs at
the Source so that they 1~ill arrange a demonstration
at the next meeting. If not, then I will try for
October. So - at this stage, you'll just have to
come to the meeting in order to find our if we've
!X!t it up or not.

See you there ...

John L. Moon

I

APPLE Pi - The meeting was held in Tompkins Hall ,
GWU on August 25, 1979. John Moon asked if the club
would like to accept an offer from The Source for a
demo for the club. A resolution 1~as passed by the
club to have the demo arranged at the earl i est con
venient club meeting. Sandy Greenfarb moved that the
next meeting date be set as September 29, 1979. This
passed - the next meeting is on the 29th. Sandy then
gave in impromptu discussion on the Integer BASIC
\forkshop that he has modified and is putting into the
club library. Hersch Pilloff said that the Paper
Tiger demo was still awaiting a machine. Several
general discussions were held on various software
i terns and a request was made for someone to review some
of the available word processors for the APPLE. A
motion was put forth to make the club policy to keep
the membership-mailing list confidential. After some
discussion, the motion was amended to require individual
permission to release the individual's name. The
motion passed as amemended.

John L. Moon

NOVAPPLE - The meeting was opened at 7:30 p.m. on
August 23 by the Secretary. Several announcements
were made . First, the next meeting of NOVAPPLE will
be September 12, 1979 at Computerland of Tysons Corner
when a demonstration will be given on the "Source".
This is a time-sharing commercial service open to
APPLE owners for a fee. The meeting will start at
7:30 p.m. There is a new piece of software out from
Dan McCreary, PO Box 16435-X, San Diego, California
92116 . It is known as Appl e 80. The ads say it con
verts an Apple into an 8080 simulator, and also cau
tions that it is slower than either system since it is
an interpreter program. tlo one had tried it yet. The
cost is S20 plus Sl.50 for shipping and handling.

One member brought in a copy of 1 the disk program "Dr.
Memory" for anyone to review before they purchase one.

A "goof" on my part occured in last months minutes. We
will meet at Computerland of Tysons Corner on the 4th
Thursday and Computers Plus of Franconia on the 2nd
\·lednesday . Please mark your calendars. The meeting
nights are subject to change if the stores request it
but for now the meeting dates appear firm .

The program was presented by Mr. Ken Woodward. He be
gan an eight 1·1eek course in assembly language. The
course outline is shown below:

CONTENTS OF ASSEMBLY LANGUAGE LECTURE:

1. Introduction to Number Systems
2. Introduction to Data Codes
3. Introduction to 6502 Machine Language
4. Monitor Usage
5. Arithmetic on the 6502 Processor
6. Moving Data
7. Basic Input and Output
8. Looping Techniques
9. Bit Operations
10. Use of Psuedo-Opcodes
11. Converting BASIC programs to ASM
12. Introduction to Sweet 16
13. Stack Processing
14. Specialized Output Routines
15. High Res Graphics/Lo Res Graphics
16. Coding for Speed
17. Coding for Efficiency
13. Floating Point Routines
19. Peripheral Programming/Hardware Programming
20. Using the Disk II Assembly Programs

cont.i.nued

Mr. Woodward's first session went into binary, decimal
and hex numbering systems. He passed out and explained
conversion tables which allow rapid conversion from one
to another. He also described the microprocessor's
structure. (A reviel'I of similar information is in
RAINBOW, Vol 1 Issue 7, dated August, 1979.) A demon
stration was performed using an Apple to display how
one could work with the monitor language. You can
make changes, display, give instructions , and enter
data into the Apple. Mr. ,•/oodward will pick up his
lessons on September 27, 1979. He would like everyone
to bring their copy of the Red Reference Manual. He
will use it to provide a basis for his discussion. If
you never have understood assembly language before,
t hi s is the series for you. It is wel l prepared and
simpl e enough for even a begi nner.

The meeting was adjourned at 9:15 p.m.

Respectfully submitted ,

Gerald R. Eskelund

E...DITORIAL
We've come a long way from Volume 1 Number 1 and I hope
you are as pleased as I am with the changes. Do I hear
three cheers for Mark Crosby's efforts? The newsletter
has grown from a timid trial balloon to the present high
qual i ty product of which I think all the contributors
can be justifiably proud. However , r am concerned that
some of our plans have gone astray and I would like to
remind you of one of them.

I don't believe that the greater Washington area can
support more than one high-qua li ty newsletter devoted
to APPLE owners and users. Human nature being what it
is, only a few individuals seem inspired to come forward
with articles and items for inclusion in the newsletter.
To set up severa l news l etters within this area 11ould di
lute their efforts to the point where each newsletter
would not reach what I call the "critical mass" needed
to beco~ self-supporting for the benefit of the APPLE
user co11J11unity. There are considerable dollar and time
costs associated with getting out an issue. Economics
of scale can only be realized when the contributors are
drawn from an organization representing approximately
200 individuals. Incorporation (like Call-A.P.P.L.E.)
as a not-for-profit organization makes us eligible for
considerably lower postal rates, mass purchase discounts,
etc.

I urge all recipients whether members of Washington
Apple Pi or NOVAPPLE, whether pafd or not, to think
again about the merits or drawbacks of forming one
cohesive organization covering the greater Washington
area for the primary purpose of publishing a regul ar,
monthly news letter that is of high cal ibre and of genu
i ne use to all APPLE users - neophytes to masters,
young and old. Remember, each chapter, branch or what
ever they may be called can maintain its own identity,
geographic location and schedule.

Other items which are in danger of falling through the
cracks:

o Club position on the ethics of exchanging pro
prietary softl'lare.

o Establishing a library of written materials for
the benefit of all members .

o Scheduling in-depth courses on the workings of the
APPLE at all levels, e.g., fundamentals of pro
gramming, PASCAL emulation of Z-80's.

peace,

Bernie Urban

2

nlBBLE.S
Beginning September 15, 1979, Apple Computer, Inc.,
will offer a low-cost extended warranty for its personal
and small business computer customers.

For Sl95, the one-year extended warranty features "Same
day Turnaround'' for carry-in repairs at Apple's authorized
Level I service centers. The extension covers all Apple
systems and products, as we l l as additions to the base
system made during the warranty period.

Will Houde, Apple ' s director of service operations , sa id
that the new warranty program wil l emphasi ze local dea ler
support to Apple customers.

The extended warranty may be purchased at Apple Level I
service centers during the normal 90-day parts and labor
warranty period . It may be renewed in annual increments.1T

@)Copyright 1979 by CW Colllllunications/lnc.

Recognizing the need for expanded educational opportunities,
Apple Computer, Inc. announced the formation of the Apple
Education Foundation . Initially funded by Apple Computer,
the nonprofit foundation will offer support and resources
to organizations and individuals who are pioneering learn
ing methods through the use of microcomputers. The
foundation wi 11 distribute hardware equipment for both
developmental and demonstration projects invol ved in
producing instructional computing materials. In addi-
tion, a few funding grants wi ll be availab le for educa
tiona l enrichment projects.

Fi na l grant proposals and authorizations for funding dis
bursements will be reviewed by a board of directors,
backed by an advisory council composed of leaders in
the field of computer-based education. The advisors will
provide guidance, and will review grant applications
and submit them for f i nal approval by the board of
di rectors.

The foundation's primary goal is to place hardware into
the hands of people who will further those educational
methods which take best advantage of the personal mi
crocomputer's capabilities.

The foundation will also sponsor the Education Program
Information Center (EPIC). EPIC wil l support micro
computer users in developing ne~ instructional programs
and i n obtaining available information on educational
materials. The center will publish information packages
containing design and development guides , editorial and
marketing guidelines, software techniques and authorizing
tools. Authors are encouraged to submit their work to
the center for revi e11 and feedback on the most effective
uses and pl acements of their materials.

Further assisting microcomputer users, EPIC's Users
Guide will give overviews of state-of-the-art compu
ting, plus critical reviews of educational programs
avai lable for popular smal l computers.

Both the Apple Education Foundation and EPIC may be
contacted at: Apple Education Foundation, 20605
Lazaneo Drive, Cupertino, CA 95014. ~

Copyright o 1979 by Creative Computing
51 Oumonl Place, Mornslown. NJ 079EO
Sample issue $2.00;
On&-year subscriplion $15.00

continued

NIBBLES - Continued

The effort to initiate a group purchase of the IDS 440
printer is well unden~ay and a demonstration of th is
unit interfaced with an Apple is planned for the Sep 29
meeting. The 440 retails for $995 and the optional
graphics 2K buffer is $199. We presently have 5 print
ers on order (all with high-resolution graphics option)
and these will be shipped on a first ordered basis. An
additional order for 5 or more printers prior to October
15 1·iill qualify all purchasers for a 12 discount,
otheruise 10%. An additional 2' discount is available
for those who wish to pay at the time they place their
order. llembers can pl ace their orders at the September
meeting or can call me at 292-3100 after October 2.

Hersch Pilloff n

Micro~IET tm is a computer time sharing and software
di s tribution service for home and small business appli
cati ons . The service costs only $5 per connect hour
plus a one-time application fee of $9, part of which
is ref unded to you in the form of one free hour of
conn:!Ct time. All billing is through Visa or Master
Charge accounts. On-line file storage (up to 64K bytes)
i s also included in the basic connect time rate. Files
must be accessed at least once every seven days.
Contact Personal Co111>uting Division, CompuServe Inc.,
5000 Arlington Centre Blvd., Columbus, OH 43220
(614) 457-8600. r

If you have been wondering where to get that tempera
ture transducer so you can control your house heating
or for experimentation, there is available an inex
pensive two-terminal IC temperature transducer from
Tri-Tek, Inc. This little device, which comes in a T0-52
metal can (about 1/8 inch diameter) produces an output
current proportional to absolute temperature. It can
'beusecf 1~i th +4 to +30V supplies and is excellent for
remote applications due to its high impedance. Be-
cause this produces variable current output, voltage
vari ations are nulled. Although Tri-Tek requires a
m• nimum of $20 on charges, this transducer is only
a pleasant $3 .49 each and requires only a trimmer
resi stor for operation.

AD590J $3.49. Include S.80 for Specs and Applica
tion sheets.

TRl-TEK, Incl, 7808 N. 27th Avenue, Phoenix, AZ 85021
(6Q2) 995-9352. IT

Remember Jade Computer Products ? Well, they now have
released their 1979 Softl~are Catalog which is jarmied
with the most popular and interesting Apple and
other software for microcomputers . The catalog is
organized by the type of software , e.g . , High Level
Languages, Games and Simulations , Educational Software,
etc. They are al so soliciting authors' programs for
di s tribution. Contact Jade Computer Products, 4go1
W. Rosecrans, Hawthorne, CA 90250 (213) 679-3313.

Located in Baltimore, the Muse Company has begun opera
tion of its personal computer phone service. It will
provide a bulletin board, software demonstrations and
on-line ordering. Dial (301) 661-8962/3. They are
using D.C .Hayes MICROMODEMS which are compatible with
the Bell System model 103 low-speed modem and are normal
ly operating at 300 baud, full duplex . They are compiling
a directory of modem equipped microcomputer owners. If
you would like to be listed, contact MUSE MICRO-PHONE,
7112 Darlington Dr., Baltimore, MD 21234 (301) 661-8547. IT

3

E_VE.nT QUEUE_

11 There will be a Persona 1 Computing Convention
in Phi l adelphia on October 5,6,7 at the Civic
Center. See this months Byte magazine for details.
$10 at the door will get you in for all three days.
There are supposed to be exhibits as well as tu
torial and lecture sessions. IT

n Washington Apple Pi will meet Saturday, September 29
at George Washington University corner of 23rd and H
Streets NH in Tompkins Hall School of Engineering Room
206 at 9:30 a.m.

n NOVAPPLE wi 11 meet September 27 at Computerl and Ty sons
Corner and October 10 at Computers Plus Franconia.
Both meetings are at 7:30 p.m.

mooE.mania
MORE BULLETlll BOARDS, ETC. REPRINTED CO'.lflTESY OF
AMRAD NEWSLETTER SEPTEMBER 1979.

STATE CITY SPO!lSOR TYPE Pl!(11;E 1'1U~'.UER

CA F~ES~U•........... ll9 -~3"- '•1
c~ LA./~ DALE COl'IPunR • •
... COHPO~ENTS l~C ARBS 2 1 3- 17r - 1 1 ~~
CA LOS ANGELES•....
... SA~ FER5ANDO CBSS • 1 1-qu1- s~qi
CA •C:STlll'~STt:P. CO:·lPUT£R•
. . . COMPONE~TS l'C AGBS 7 1U- ~Qq- 1Q 8 4
CA SAN DIEGO COM~ TEP
... MERCriANTS ABBS 7 11- ,~~-95 7
CA HAWTHORNE ABBS ...•.. ? 13- 675- 9803
CA ltUNTINGTOll BE4 t:d ~o~s -...
. .. ~E!ER ELECTRO~t rs 4HBS ••• 7 14-9& 4- 4J4b
CA MARINA DEL R~ r ABBS 2 13- ~2 1-71~9
CA SANT EE PEOPLES 1 'ISG•....
• . . Sf STEM ABBS 7 •4- 449 - "'lM
CA S IG~AL ltlLL Pl AI PH ER-
... ALS u~t.TO !'IC ABt!S? 13- •l2.J- 1'>16
CA SAN FR a~C l SCO Aij~S 4 1 5- 6~~-•2•~
CA SA ~ DIEGO BILL' S A88S 714-UU9-~6~n
CA PASEDENI cass 213- 195- 1788
CA SA~ DIEGO CO~PUTER soc ... 71•-697 - 2176
CA SANTA CLARA CBBS 40t - ,4 ~ - 2905
CA SAN DI EGO STAN SKOG-
... LU~D l~ fOB !T COBS 714-~~~ - ?Q~l
CA CA!IOGA PA RK SAr. i'fR-•...
. • • GA~DO VALLEY ABBS 2 1 3- 3un - , 1 ~~
DC ~ASHI~GTOr. J '1A CS•
... 110 BAUD•.... 2r•- 63s - ;1 10
.. . 300 9 AUO ••••••••••••••••• .?il?-• 3~ - 710
:JC (ALSO .5E£ •; ,;) ••.••••••••...••.• • •••
FL llES Tl'. fT JAL T.'.J•;. • • • • • • • • • • • • • • • •••
. . . B£ACH ABtlS•....... Q0~ -~41- 1< 7
FL ~!AMI ABBS 30~ - q~ 1 74~ 1
GA ATLA~TA 90R THSTAR ooq -Y 39-• •·~
G' ATLANTA CO~P sue cans U04-19U-l2?r
uA aTLAN TA U04-458-48Ab
GA ATLA~TA 404-325-0526
IL CrlI CAGO PERS CO~P•...
. .. OF CHI CAGO AUBS 31 2-337-66 31
IL Cd l CAGO CBBS•..... . . 31 2- 528- 7141
IL ~~I CAGO FORUM 80 31 2-925- 0259
IL JJLI ET ~A YNE JUP! TfH
. . . 11 ~ BAJD Ofl LY. 8 15- 727-7069
Kv .J C<I TA FORU~ 80 316-746-2078
UA · OST~~ 6 17-963-331 0
~A '1AY•,A RO NECS CBBS 6 17-963-8310
~~ PAK ~VILLE MUSE co . ..•.... 301-661-8962
·~ ? AR <VILLE MUSE co 301-661-8963
•O kA~ SAS C! Tr•. 816-737-1031
MO 'AUSAS CIT! FORUM 80 816-861-7040
~J nou :d.l SROCK s J ERSEY•........
.•. EL ECTRO~IC ~ AIL SYS 201-•57-089 3
~y ~O~G I SL l~ D ABBS 212-U48-6576
!,){ A·.Ro·; DIGlnL GR'lUP 2 16-745- 7855
OR BEA\~RT<JN CSBS ~ •......•. 503-6•6-55 10
SC C~Lw~ !l A UNIV OF COL 803-77 1-092?
rx D~Lt.AS CBBS••..• . . 2 1u-sq1-S759
TX ~ALL~S fORU~ ao ..•..•.... ?1U - 288- q859
TX 9ALLAS U5lV OF T• 214 - 634-0842
Tl JaLLAS US ! ¥ Of TX 2 1U-634-0878
T• FT • ORTH FO~U~ 80 817-923-0009
T• HOUSTOh ABB~• 71 3- 977-7019
T• ~A~ ANTONIO ABBS 5 12- 657- 0719
VA AL E•ANDRIA POTOMAC •..
. . . MICRO ~AGI C I NC 703-750- 0930
VA FALLS CHURCH VI RGI NIA•...
... BUSIN ESS s r STE"S ABSS 703-533-8591
VA MCLEA N PAUL R l~ A LD0 703 -893-WUR!
...• UK! ABas 703-893-9•7•
VA VIEN~A A'1 RAD ~Lq! ,G 70 3- 281-2125

Internal Structure of lnt090r BASIC
by Sandy Greenfarb

The purpose of this article is the consol idation of information on the internal
structure of integer BASIC . Any similarity between this and the reference mat
erial is intentional, and reflects the outstanding job of the originating authors .
The malerial presented is advanced and is not intended for beginners. Despite this
fact, pains have been taken to carefully define any terms that readers might be ex
periencing for the first time. Also, some introductory material has been added to
make this article a complete entity, requiring no additional reference.

Within the Integer BASIC internal structure is contained a myriad of strange ani
mals, special-purpose bytes , characters, tokens, relative addresses, and absolute
addresses:

BYTE - the smallest addressable unit on the APPLE II. Each byte can represent
256 different va lues. On a 32K machine, there are 32,768 addressable locations .
A byte is composed of eight bits, each capable of a "zero" or "one" state. To
paraphrase, "a byte is a byte is a byte". These 256 values may be considered in
several ways, all a reflection of the same value. Sometimes the values may be
considered as representing 0 thru 255 (absolute value), other times -128 thru +127
(signed value). Later on wil l be expressed terms such as positive token and nega
tive ASCII . These will be referring to the state of the left-most or high- order
bit. In algebraic considerations, when this bit is a zero, the byte is considered
positive, and when the bit is one, the byte is negative.

SPECIAL PURPOSE BYTE - is just what it says. For whatever systematic reason,
a byte in a certain position or place has a special defined set of special meanings
for its possible values.

CHARACTERS - Integer BASIC uses the standard ASCII character set. Suffice it
to say that th is is a standard way of representing the various alphabetic, numeric,
special (punctuation), and control characters that are avai lable for use. These are
l isted in the ASCII Character table. At this stage, some readers have opened their
Applesoft manuals and compared the ASCII table in this article with that in the man
ual and are noting the differences i n the values. Applesoft uses positive ASCII
(high bit=0) and Integer BASIC uses negative ASC I I (high bit= l). Add decimal 128
or hexadecimal $80 to the App lesoft values to realize they are the same . (Note
that as a shorthand, the dollar sign "$" is used as a prefix to indicate a hexa
decimal number).

TOKEN - As a way of reducing the si ze of programs , Integer BASIC internally re
duces all command language to single characters . For exampl e, GOSUB becomes SSC.
These characters are referred to as tokens, in effect a "tokenized" representation
for particu lar meanings . The Token table contains all tokens used with Integer BASIC.

ADDRESSING - "Where do the Browns li ve? Eight houses up the street at 6502
Apple Lane." Relative addressing is relative to the current location ... eight houses
up the street (from here). Absolute is a self-contained entity ... 6502 Apple Lane.
Integer BASIC uses both. Note that since one byte can only describe 256 unique values,
it takes two bytes to ful ly describe an APPLE II address.

WORD - A pair of bytes with a specific meaning; most often used are address words
and pointers, a form of address . Because of hardware reasons, these words are formed
with low byte first and then high byte . The actua 1 value of these "words" is cal cu-

POI NTER - is a word that contains the address of another location. A pointer
"points to" or designates the location 1~hich address it contains.

***************************END OF INTRODUCTORY INFORMATION****************************

Figure 1 illustrates the four significant pointers for an Integer BASIC program in
memory. HIMEM is normally the top of memory available for programming. The pointer
word for HIMEM ($4C and $4D) contains the location of the first byte immediately
following the last byte of the last line of the program. If DOS is resident, it con
tains the address of the first byte reserved by DOS. HIMEM may be changed by the user
with the HIMEM: command. The general purpose of the HIMEM pointer i s to indicate the
end of the area occupied by a program. PP or Program Pointer (SCA and SCB) denotes
the first byte of a program. After a Control-B or NEW or DOS INT command, PP will be
equal to HIMEM. This is not to.say that there is no program in memory, but to say that
Integer BASIC has commanded its pointers to ignore what is there as not significant.
Such programs are sometimes recoverable, but are not discussed within the scope of this
article.

As program lines are entered (by keying in or EXECing a text file or by LOADing),
PP decreases to allow for the growth of the program. The lower limit is PV (next para
graph) at which time any attempt to add more program will cause MEM FULL ERROR.

LOMEM pointer (S4A and S4B) is the address assigned for the start of variables. This
address is normally $800 (2048) unless changed by a LOMEM: command. PV, the Variable
Pointer for the end of varfables (SCC and $CD) is initially equal to LOMEM, if no
variables are actively assigned as in the case of a NEW, LOMEM, CLR, or RUN command.
Similar to HIMEM, PV contains the address of the location immediately following the
last location allocated to variables . While PP changes while a program is being en
tered, PV does not change until a program is running. Each time Integer BASIC en
counters a symbol ic variable (during the running of a program), it searches the symbol
table. If the referenced symbol is not found, it is created and added to the variables
and PV increases to account fo r its required space. Whi l e the variables are being built
during the running of a program, an attempt to increase PV greater than PP will al so
cause MEM FULL ERROR. Note that PV and the variables remain intact on a soft entry to
a program (CON, GOTO li ne number, or mach ine language trickery) .

MEMORY
MAP

BASIC $4A and $4B (74 and 75)

1

------1.0MEM (start of variables)

VARIABLES
-------'--~'-----~v (Variable Pointer, end of variables)

$CC and SCD (204 and 205)

BASIC

PROGRAM

~-----l'P (Program Pointer, start of program)
SCA and SCB (202 and 203)

first 1 i ne

~last line
1 ated by mul tiplyi ng the second byte by 256 and adding the first byte to that result.
This is not really so strange as it sounds. Think of your APPLE II as a city. This
city has 256 blocks named Zero street thru 255th street . Each street has 256 houses
numbered zero thru 255. Now, is there anything wrong with saying 32 28th Street? 4
That's the same format as in the APPLE II - low then high portion .

-----~#-------tt!MEM (end of program)
$4C and $40 (76 and 77)

f igure 1

Lines of a BASIC program are not stored as they were original ly entered (in ASC II)
on the APPLE II due to a pretranslation stage. Internally each line begins with a
length byte which may serve as a link to the next line (relative addressing). The
length byte is inmediately fo l lowed by a byte pai r l ine number stored in binary , l ow
order byte first. The pretranslator only accepts line nuntiers f rom 0 to 32767, however
there are ways to enter and sometimes legitimate uses for line numbers up to 65535 .
The line number is followed by items of various types, the fina l of which is an end
of-line token (#01) . Refer to figure 2.

figure 2 - LINE REPRESENTATION

hi DBLl Cfil.9LJ c=J Lengt Li ne Number items
c=J []!CJ

End-of-Line
Token Byte

Single bytes of value less than $80 (positive ASCII) are tokens generated by t he
translator. Each token stands for a fixed unit of text as required by the syntax
of BASIC. Some stand for keywords such as PRINT or THEfl while others stand for
punctuation or operators such as "," or "+".

Integer constants are stored as three consecutive bytes. The first contains an ar
bitrary ASCII digit (SB0-SB9) signifying that the next two contain a binary ainstant
stored low order byte first. (This provides a means of distinguishing from a symbol
ic variable name which by definition begins with an alphabetic letter.) The line num
ber is not itself preceded by SB0-SB9 as its position in the line has already defined
its meaning . All constants are in this form including line nuntier references such as
in the :.ldlemenl GOTO 500. Although one or both bytes of a constant may be positive
(less than $80) they are not tokens. A constant is always followed by a token .

Variable names are stored as consecutive ASCII characters with the high order bit set
(negative ASCII). The first character is between $Cl and SOA (ASCII A-Z), dis
tinguishing names from constants . All names are terminated (followed) by a positive
token. It should be noted that the $ in string names is represented by the token $40
rather than the ASCII $A4 .

String constants are opened with S28 , the token for left quote, and closed with $29,
the token for right quote. Between is norma l ly negative ASCI I. REM statements begin
with the REM token $50 followed by ASCII text fo l lowed by the end-of-l i ne token $01.

figure 3 - ITEMS some
positive

CONSTANT $Bl soc $05 ~
(1500) (B0-89) ~ ~

some
positive

NAME (ABC) _j.£L_ _jg_ _fil_ token

some
positive

STRING NAME
(B09S)

ifL ~ --2!!.L.. _ML token

-continued-

figure 3 conti nued

STRING $28 __29_ _j.@_ -1!!.!__ $29
CONSTANT ~ right
(A-1) quote quote

REM $50
~

&ill _&ill_ _&ill_ $01
end-of- line

token token

Whether in immediate or RUN mode, when BASIC recognizes a variable name, it searches
the variable area to determine if the variable has already been defined . The search
starts at LOMEM and ends when the variable is identified (in the area) or PV is reached.
If PV is reached 11ithout a match, the variable is added and PV is increased appro
priately. This search logic should make it apparent why "frequently used" variables
should be the first encountered (initialized) in a program. There are four types of
variables in Integer BASIC: simple and DIMensioned integer va riables and simple and
DIMensioned strings. Each has its own unique format, however , all four formats are
very similar.

All four fonnats begin with the variable name represented in negative ASCII. As was
true in the program area, in the variable area as well, the Sofa string name is re
presented by a S40 token. Next comes the display byte. This byte has two functions.
First, by nature of its only possible values, zero or one, it delimits or denotes an
end to the symbolic name. Second, it indicates whether or not the variable should be
displayed (SOO=no display, $0l=display). (See pages 23 and 25 of the "Red Book", DSP
and NO DSP co11111csnds.) The next two bytes in a variable definition are the pointer to
the start (byte) of the next variable name. This is an absolute address. At this
point, the four types of variables differ. A simple integer value has only two more
bytes representing the value of the integer (LOW/HIGH). A DIMensioned integer has
two bytes plus two more bytes for the size of the DIM statement. DIM A(5) would have
two bytes reserved for the va 1 ue of A(0) and t110 more bytes each for the respective
values of A(l) thru A(5) . Note that there are no special tokens to indicate the end
of the DIM. As the next variable wi l l begin in the first byte after the current one,
and as this address of the next variable is defined (in the preceding two bytes to the
variable values), Integer BASIC has sufficient facility for determini ng the size of
integer va l ues.

On the other hand, string variables might no: necessari ly occupy their ful l al loted
space, and their format is a little differen . . Following the next variable pointer,
a simple (non-DIMed) string uses two more by:es. The first is for the negative ASCII
character. (remember that a non-DIMed string can only be one or no characters in
length.) The second byte is a positive value (less than $80) denoting the end of the
string. As a special case, if the string is nu l l, both bytes will be equal to $00.
The variable value portion of a D!Med string is "N" bytes (where N is the length de
scribed in the DIM statement) plus one for the end-of-string token. As above, if the
string is null, the first two value bytes - S00. Strings may be shorter than their
defined length. BASIC reminds itself of the actual string length by making the first
non- used byte a positive token. For example with the following short program:
10 DIM A$(5) : AS - "ABC" : Ei'ID would produce in the variable area in hex "Cl C2 C3
lE FF FF". Note the use of SlE to indicate the premature end of the string. The
variable area formats are described in figure 4. For what it's worth, the following is

the length of the area required for each type of variable:

INTEGER NAME = nurrber
DIM INTEGER DIM NAME(N)
SIMPLE STR!llG NAMES="X"
DIM STRING DIM NAMES(N)

figure 4 - VARIABLE FORMATS

SIMPLE
INTEGER
(NAME)

INTEGER
ARRAY
(DIM
NAME(N))

1 Byte
for each
char. of
name

1 Byte
for each
char. of
name

Display
Byte

Display
Byte

Five bytes + number of characters
Five bytes + number of characters
Five bytes + nurrber of characters
Four bytes + nurrber of characters

Next va riable
pointer address

in name .
in name + 2*N.
in names.
in name$ + N.

Value

LOW HIGH LOW HIGH

Next variable
pointer address

LOW HIGH

Val ue
(N+l occurrences)

LOW HIGH

LOMEM may be changed within a program by entering an illegal LOMEM cortT11and in a pro
gram or by POKEing the pointers. Remember that LOMEM causes PV to equal LOMEM, effec
tively deleting all variables.

STRINGS: By knowing where strings are stored in memory, it is possible to simulate
the APPLESOFT CHRS function or even simulate string arrays. To quote most every college
professor, "The exercise is left to the reader."

HIMEM: When possible, set or reset HIMEM between programs, that is if it must be
changed. Lowering the value of HIMEM will automatically move the program downward
in memory to correspond to the new values of HIMEM and PP. Raising the value of HIMEM
wi l l not! The program works normally until it reaches a branch instruction (GOTO or
GOSUB), then it tries to find a line number ~1hich isn't where it should be. At this
point the program generally "hangs up".

Why do illegal HIMEM statements only work part of the time? Th is has a complicated
but beneficial answer. As stated above, when HIMEM is lowered, the program is lowered
in memory to correspond. That is the first fact. The second half of the answer is
the knowledge of how BASIC executes its lines . Once a program is running, Integer
BASIC has no need to refer to the PP (Program Pointer) unless it reaches a branch in
struction. Instructions continue to be executed in sequence WITHOUT REGARD TO POINTERS
until a branch is reached . When a HIMEM lowers a program in memory, it may cause the
program to overlay a portion of itself. Should it cause the area of memory which is
currently executing to change, it may (and generally will) cause the area previously
occupied by the next instructions to become "garbage" which wi ll confuse BASIC and

SIMPLE
STRING
NAMES

!Byte
for each
char. of
name

~40 token
for $ Display

Byte

Next variable
pointer address

LOW _t_ HIGH

ASCII
char.
hi bit
"' 1

.....,...--,----,,--, nonnally "hang up" the machine. For these reasons, illegal HIMEM statements should be
End of in the latter portion of the program which will be left intact (even though no longer
string pointed to) if the lowering of HIMEM is significant enough. This same "sequential"
token.hi execution is what also allows unhitching machine language prefix programs and creating
bit=0 APPENDing routines.

DIMed
STRING
DIM NAMES
(N)

TByte
for each
char. of
name

~ LJ
Display
Byte

ext vana e
pointer address

LOW HIGH

p to N
neg ASCII
chars. I

End of
string
token, hi
bi t=0

Note: For variable strings, remember the null stri ng is represented by two bytes of SOO
immediately following the Next variable pointer address. Al so remember that the
"in use" length of a DIMed stri ng may be less than its defined length and that
the length can be identified by being followed by a positive token.

FINAL NOTES: The remaining material is in no logical order, but expresses some addi
tional materials and experiences t hat are related to the article without having a log
ical pl ace to fit with out detracting from the presented ma teri a 1 s. With a knowledge
of the internal structure, one can now figure how to add i ll egal statements such as
HIMEM:, DEL, LIST line, etc. APPLE wisely made these statements illegal. Any "Trickery"
that is added to a program should be carefully tested to ensure it acco111J l ishes its
desired purpose for all possible situations. In general, it shoul d not be used, but
this is not meant to deny those few situations where it is exactly what is needed . All
that is recommended is that when deviati ng from the '"standard" !nteger BASIC, be ULTRA-
careful.

SAMPLE APPEND ROUT! NE: 10000 POKE 0,PEEK(76):POKE l,PEEK(77);REM SAVE ORIGINAL HIMEM
10010 POKE 76,PEEK(202):POKE77,PEEK(203):REM LOWER HIMEM TO

CURRENT PP, LEAVING OLD PROGRAM INTACT
10020 PRINT "DcLOAD NEW-PROGRAM": REM FIRST CHARACTER OF PRINT

STATEMENT IS CONTROL- D
10030 POKE 76,PEEK(0):POKE 77,PEEK(l): REM RESTORE HIMEM POINTER.

NEW-PROGRAM IS NOW APPENDED TO BEGINN!NG OF OLD PROGRAM.

The warning with t his type of routine is to ensure that the line numbers of the appended
program are less than the original program line numbers. When BASIC executes a branch,
i t starts at PP (Program Pointer) and searches upward until it finds the desired line
number. If there is more than one with the same number, the second could never be the
object of a branch. If BASIC finds a line number greater than the object before it
finds the object, the program ~1 ill halt with a BAD BRANCH ERR. n

6

TABLE OF ASCII CHARACTER VALUES

-r.AS""'C"l..-1 --.A"'pp<r[rE---.N"'UMu.B>EE"'R---;ASiFr'"C "I rr-AiiiiiPPLE NUMBER
CHAR KEYBD DEC HEX CHAR KEYBD DEC HEX

NUL SpC 12S sso + sa . 171 SAB
SOH AC 129 SSl ' 172 SAC
STX ac 130 $S2 - 173 SAD
ETX cc 131 $83 174 SAE
EOT oc 132 $84 I 175 $AF
ENQ Ee 133 $8S 0 176 $BO
ACK Fe 134 $S6 1 177 $Bl
BEL Ge 13S $S7 2 178 $82
BS 136 $88 3 179 $83
HT IC 137 SS9 4 !SO $84
LF Jc 13S SBA s 181 SBS
VT Kc 139 S8B 6 1S2 $86
FF Le 140 SSC 7 1S3 $87
CR Mc 141 SSD s 1S4 SBS
so NC 142 SSE 9 1S5 $89
SI oc 143 S8F : 1S6 $BA
OLE pC 144 $90 ; 187 $BB
DC! QC 14S $91 < !SS SBC
DC2 Re 146 S92 = 1S9 SBD
DC3 SC 14 7 $93 > 190 $BE
DC4 Tc 14S $94 ? 191 SBF
NAK Uc 149 $95 @ 192 sco
SYN vc 150 $96 A 193 $Cl
ETB we 151 $97 B 194 $C2
CAN xc 1S2 $98 c 195 SC3
EM yC 153 $99 D 196 SC4
SUB zC 154 $9A [197 $CS
ESC sa. 155 $9B F 19S $C6
rs -- 156 $9C G 199 $C7
GS SMC 157 $90 H 200 $CB
RS SNc 158 $9E I 201 $C9
us -- 159 $9F J 202 SCA
SP sa. 160 SAO K 203 SCB
! 161 SA! L 204 sec
" 162 SA2 M 205 SCD
I 163 SA3 N 206 SCE
$ 164 SA4 0 207 SCF
,; 165 SAS p 20S $00
& 166 $A6 Q 209 $Dl
I 167 $A7 R 210 $02
(16S SAS s 211 SD3
) 169 SA9 T 212 $04
*

"V
170 SAA u '¥ 213 sos

ASCII APPLE NUMBER
CHAR KEYBD DEC HEX

v sa. 214 SD6
w l 21S $D7
x 216 sos
y 217 $09
z 218 $DA
c -- 219 SOB

' -- 220 $DC
J SM 221 $DD
I\ -- 222 SOE

-- 223 SDF
r -- 224 SEO
a *sa. 225 SEl
b 226 SE2
c 227 SE3
d 22S SE4
e 229 SES
f 230 SE6
g 231 $E7
h 232 SES
i 233 $E9
j 234 $FA
k 235 SEB
I 236 SEC
m 237 $ED
n 23S SEE
0

I
239 $EF

p 240 $FO
q I 241 $Fl

I r

l
242 $F2

s 243 $F3
t 244 $F4
u 245 SFS
v 246 $F6
w 247 SF7
x 24S SFS
y 249 SF9
z 250 SFA

{ -- 251 SFB
: -- 252 SFC
~ -- 253 $FD
II -- 254 SFE
DEL/ -- 255 SFF
RUBOUT

-Ir=Line Feed; CR=Carriage Return; SP=Space; ESC=Escape; sa.=keyboard
s-prefix=shi ft; c-suffix=control. (*Upper case only)

same as ASCI l.

INTEGER BASIC TOKEN TABLE (with co1T111ents by original author-Bruce Tognazzini)

NUMBER
DEC HEX

0 so
1 Sl
2 S2
3 S3
4 $4
s $S
6 $6
7 $7
s $S
9 $9

10 $A
11 SB
12 SC
13 SD
14 SE
15 $F
16 SlO
17 $11

lS $12
19 $13
20 $14
21 $15

22 $16
23 $17
24 SlS
25 $19
26 $1A
27 $1B
2S $1C
29 $10
30 SlE

31 $1F
32 $20
33 $21
34 $22
3S $23
36 $24
37 $25
3S $26
39 $27
40 $28
41 $29
42 $2A

43 $28
44 $2C
4S $20

7

TOKEN

HIMEM:

LOAD
SAVE
CON
RUN
RUN
DEL
' NEW
CLR
AUTO

' MAN
HIMEM:
LOMEM:

+

*

>=
>
<=
<>
<
AND
OR

MOD

+
(

' THEN
THEN

COMMENTS (Minor additional corrments by S.G.)

Token irrelevent - used internally as begin-of-line
End-of-line token - each line ends with $01
Used internally in delete line processing
Colon for statement separation
Tape command
Tape command

RUN n, where n is a line number
RUN from first li ne of program

Comma used with DEL (Del 0,10)
Program self-destruct unless you know what you're doing
Clears variables, resets PY to LOMEM value

Comma used with AUTO (AUTO 10,20)

The real thing, note colon is already in command

THE FOLLOWING ARE NUMERIC OPERATORS:

The associated parenthese are 56(left) and 114 (right)
exal!llle: A• 14 * (27+15)

THE FOLLOWING ARE NUMERIC VARIABLE LOGIC OPERATORS:
example: IF X ~ 13 THEN END

unused
used in string D!Ms : DIM AS(n)
comma used in AS(3,3)
Followed by a line number: IF X=3 THEN 10
Fol lowed by a stalement: IF X 3 THEN AS="CAT"
used with string inputs: INPUf "WHO",WS
used 11ilh numeric inputs: INPUT "QW\NTITY",Q
Beginning or left quote
Ending or right quote
substring left parenthesis: PRINT A';(l2,14) used with 114 as
right parenthesis (see also 66)
unused
unused
variable array left parenthesis: X(l2) used 1~ith 114 as right paren.

NUMBER
DEC HEX

46 $2E
47 S2F
48 $30
49 $31
so $32
Sl $33
S2 $34
S3 S3S
54 $36
SS $37
S6 $38

S7 $39
S8 $3A
S9 $3B
60 S3C
61 $30
62 S3E
63 $3F
64 $40
6S $41
66 $42

67 $43
68 $44
69 $4S
70 546
71 $4 7
72 $48
73 $49
74 $4A
75 S4B
76 S4C
77 $40
78 S4E

79 S4F
80 sso
81 $51
82 $52
83 SS3

84 SS4

8S SSS
86 $56
87 SS7
BB $58
B9 $59
90 SSA

TOKEN

PEEK
RND
SGN
ABS
POL
RNDX
(
+

NOT
(

LEN(
ASC(
SCRN(
,
(
s
s
(

,
TEXT
GR
CALL
DIM

DIM
TAB
END
ItlPUT
INPUT

INPUT

FOR

TO
STEP
NEXT

COMMENTS

uses 63 and 114 for parentheses
II II

unused
used i n variab le DIMS: DIM A(lO)
unary si9num: A=+S
unary signum: B~ - s
numeric : IF NOT A TH EN B=3
used with 114 in logic statements and numeric operations :
IF C AND (A=14 OR B=l2) THEN X=(27+3)/13
string logical operator: IF AS="CAT" THEN
string l ogical ope r ator
uses 114 as right parenthesis

•! II

corrma used with SCRN : PRINT SCRN(X,Y)
used with 114 afte r PEEK . RND, SGN, ABS, and POL
string
unused
specia l case string array right parenthesis, used when string array
is t he destination of the data . In the example, AS(l)~B$(1), the
AS l eft parenthesis wil l be 66 and BS's wil l be 42. Used with 114 as
right parenthesis .
Next variable in DIM statement is string: DIM ANYTYPE,STRING NAME
Next variable in DIM statement is integer: DIM ANYTYPE. INT NAME
String prints: PRINT ANYTYPE;STRING VAR NAME
numeric prints : PRnH ANYTYPE ;NUMERIC VA?. NAME
end of pr int statement PRINT A;
string pr ints: PR INT ANYTYPE, STRING VAR NAME
numeri c pr int: PR! NT ANYTYPE, NUMER IC VAR NAME
end of pr i nt statement: PRINT AS,

string var. Parentheses 34 and 114. If comma is used, it is 67 or 68,
depending on type of next variable.
numeric var. Parentheses S2 and 114. Comma same as 1·11th 78 .

String with no prompt: INPUT AS
String or numeric with prompt:
INPUT "WHO" .AS uses comma 38
INPUT "NUM" ,A uses comma 39
numeric with no prompt: INPUT A

THE FOLLOWING ARE FOR FOR/NEXT LOOPS :

NEXT l,J
8

NUMBER
DEC HEX

91 $5B
92 SSC
93 $50
g4 SSE
9S $SF
96 $60
97 $61
9B $62
99 $63

100 $64
101 $65
102 $66
103 $67
104 $6B
lOS $69
106 $6A
107 $6B
lOB S6C
109 $60
110 $6E
111 S6F
112 $70
113 $71
114 $72

115 $73
116 $74
117 S7S
llB $76
119 $77
120 $78
121 $79
122 S7A
123 S7B
124 ~7C
I2S $70
126 $7E
127 $7F

TOKEN

RETURN
GOSUB
REM
LET
GOTO
IF
PRINT
PRINT
PRINT
POKE
,
COLOR=
PLOT
,
HLI11
,
AT
VLIN
,
AT
VTAB

)

)
LIST
,
LIST
POP
NODSP
NODSP
NO TRACE
DSP
DSP
TRACE
PRll
IN~

COMMENTS

string va r iable or literal: PRINT A$:PRI NT"HELLO"
numeric val ue: PRINT 123: PRINT A: PR INT ASC(AS)
du11111y PRINT: PRirff:PRINT

comma used with POKE

corrma used with PLOT:

comma used with HLIN
AT used with HLIN

comma used with vu;~
AT used with VLIN

PLOT X, Y

string -- non- conditional: AS="HELLO"
numeric -- non-conditional: A"l4
the only r i ght parenthesis token - \'/On most popular token award
at Atl antic City
unused
List a range of nurrbers or specific number: LIST IO:LIST 5,30
comma used with 1 is t
LIST entire program

stri ng variable
numeric variable

stri ng va ri ab 1 e
numeric variable

ADDITIONAL READHIG
1. !NTEGER BASIC SUBROUTHlE PACKAGE, by Bruce Tognazzini, APPLE Soft\'/are Bank, Con-

tributed Programs Vol urnes 3-5, pages 69-87. Free, see your deal er.

2 IrlTEGER BASIC INTERNALS . by APPLE Computer Engineering Staff, Applesauce, June 1979,
Vol 1. No. 4, pages 4.20-4.22 . SI.SO, for subscriptions SID/yr or single issue,
l'lrite APPLESAUCE . 12804 Magnolia. Chino, CA 91710.

1 CALL-A.P.P. L.E .• various issues. •.:rite CALL-A.P.P.L.E., B710 Salty Drive ll.~L.
Olympia, WA 9B502 for details. Though not specifically ~sed ir ~his drticle •.
tre author gives full credit for the knm'lledge an~ experi~nce_gained_ from reading
the •ssues of CALL-A.P.P.L.E. This is a non-prohl organ1zat1on dedicated to t~e
o;haring of knowledge of the APPLE II and APPLE II progra11111ing.

l<rterenres: APP E :1 BASIC STRUCTURf. by 5teve :·/ozniak, Dr. Dobhs Jo1.1rna'
of Computer Calisthe11i1;s dnd Or·thodo11Lid, Issue 21.
APPL[II Reference Ma nual, Janiwry 1978.
APPl t Software Bank, !;ontributcd Programs Volurnt<s 3-5.

J

Cale...ndar .r by John L. Moon

This article describes a Perpetual Calendar program.
With this program you can print calendars for any
month of any year (since the start of modern date
keeping), or by using one of the subroutines within
the program you can identify the day of the week of
any arbitrary day.

See the attached listing of the program to follow this
discussion. The heart of my Perpetual Calendar pro
gram is the subroutine from line 100 to 190. Its in
puts are the variables Y, M, D for Year, Month, and
Day. It returns the variable N with a value from 0 to
6 for Saturday, Sunday, . . •. Friday.

The routine from 1010 to 1095 prints out a formatted
calendar for a single month. Its inputs are the vari
ables YI and Ml for Year and Month. It prints out
the month name and the selected year, and then
repeatedly calls the day of week routine for as many
days as are in a month to fill in the body of the
calendar.

The main loop of the program is from 2000 to 3000.
Here is where the instructions are printed out and
the user is asked for the Year and Month desired.
If the Month is entered as a zero, then a loop is used
to call the routine at 1010 from Month 1 to 12 to make
the calendar for a year.

The a lgorithm is derived from Zelle r's congruence.
An explanation can be found in the September 1979
issue of Byte on page 126. n

10 DIM M$(40): M$="JANFEBMARAPRMA Y JUN JUL
A UGSEPOC TNOVDEC II

20 DIM MD(l4):MD(l)=31: MD(2)=28: MD(3)=31:
MD(4)=30: MD(5)=31: MD(6)=30: MD(7)=31:
MD(8)=31

30 MD{9)=30: MD(l0)=31: MD(ll)=30: MD(l2)=31:
MD(l3)=31: MD(14)=28

40 GOTO 1000
100 IF M>Z THEN 130
110M=M+l2
120 Y=Y-1
130 N=D+2*M+((M+l)/2)
140 N=N+Y+(Y/ 4)-Y/lOO+Y/400+2
ISO IF MD(M)<31 THEN N=N+l
170 IF M=8 OR M=IO OR M=l2 THEN N =N+ I
180 N::N MOD 7
190 RETURN
I 000 GOTO 2000
1010 M=Ml: Y=Yl
1012 DAYS=MD(M)
1013 IF(Y MOD 4=0 ORY MOD 400=0) AND M=2

THEN DA YS=29
1020 PRINT: PRINT II "· .
1021 PRINT II ";M$((M-1)*3+1, (M-1)*3+3);

II ";Y
1022 PRINT
1030 PRINT" SUN MON TUE WED THU FRI SAT"
1035 PRINT
1040 FOR D=l TO DAYS
1050 M=Ml: Y=Yl: GOSUB 100
1060 IF N=O THEN N=7
1070 IF D>9 THEN 1072: TAB 4*N: PRINT D;:

GOTO 1080
1072 TAB 4*N-l: PRINT D;
l 080 IF N=7 THEN PRINT

1090 NEXT D
1095 RETURN
2000 CALL -936: VTAB 4

2010 PRINT "PERPETUAL CALENDAR PROGRAM":
PRINT: PRINT "ENTER YEAR, MONTH. IF
MONTH IS ZERO"

2020 PRINT "THEN THE WHOLE YEAR WILL BE
PRINTED"

2025 PRINT "YEAR AND MONTH= 0 ENDS PRO
GRAM'

2030 INPUT "YEAR, MONTH", Y3,Ml
2035 IF Y3 =O THEN 3000
2040 IF Ml =O THEN 2050:Yl=Y3: GOSUB 1010:

GOTO 2010
2050 Yl=Y3: FOR Ml=l TO 12: GOSUB 101 0:

INPUT "HI T RETURN FOR NEXT MONTH",
A$: NEXT Ml: GOTO 2010

3000 END

Applesof t Surprise. by Jim Kelly

9

L ast month I decided to take the plunge and get an
APPLESOFT firmware card . When I inspected my
purchase at the store, the salesman pointed out that
I had a "full board." I didn't apprec1at~ the significance
of that comment at the time. When I got home and
tried out my new addition, I discovered to my delight
that my firmware card contained the Auto Start ROM'
Evidently this is being included free of charge in the
nl'west version of the firmware card .

The design seems to be similar to that suggested by
Darrell Aldrich in the July-August 1979 Call - APPLE,
except that the old monitor remains with- the Integer
BASIC mode. The new version also contains a new
manual, The APPLESOFT Tutor:al, very similar in

style to The BASIC Programming Manual written for
Integer BASIC. You should be able to tell if you are
getting the ne"' version of the firmware by looking at
the back of the package - the new card comes with two
manuals, the APPLESOFT Reference Manual and the
new tutorial, clearly visible from the rear.

There is virtually no docun entation on the Auto Start
ROM in this new offering. The new tutorial manual
assumes that you have Auto Stu rt (it was probably writ
ten for the APPLE II Plus system) and has an appendix
on the old monitor. But this manual is written at an
elementary level and dots not r·~cognize the ex:st•·nce
of Integer BASIC . The APPLESOFT Reference Manual
makes no mention of Auto Start.

The re seems also the be one minor operating problem.
Switching from Integer BASIC to APPLESOFT some
times bombs. What happens is that the APPLESOFT
prompt symbol appears but every attempt to hit
"Return'' puts you in the monitor. The only sure solu
tion I've found is to turn the APPLE off and then on
again. Switching from APPLESOFT to Integer BASIC
appea rs to be no problem. I don't have a disk, so I
don't know if this problem will affect the selection of
APPLESOFT from the DOS.

Well , enough of looking a gift horse in the mouth. It
is certainly a pleasant surprise to find this little
freebie tn the box. After all, the Auto Start ROM
alone lists for $65. 00. With that savings I suppose
I can buy the documentation. 11

ATTENTION MEMJERS! ATTENTION HEltlERS! ATTENTION MEMB ERS ! ATTENTION MEl'-EERS!

Please check your mai li ng l abel now. If it has a "P" i n the upper right-hand
corner, you are a paid member . "C" means complimentary (to our computer stores
1 oca lly) and (whoops!) "U" means you have not paid your membership dues.

The deadline to send in your dues is October l, 197g. If you don ' t, we will
remove your name from the mailing 1 ist and you will not receive the newsletter-.

If you want to be sure to get every issue, fill out the form on the right and
send it in with your dues as quickly as possible.

We want to serve our membe rsh ip as eff iciently as possible which means we
have to weed out the "dead wood" people who don't care to pay for the excellent
work of our club. In that way, we can better serve our members' needs.

Thank you.

IO

Wa1hington Apple Pi
member1hip Application

NOTE: Club policy prohibits revea l ing members' names and addresses. Additionally,
tile information requested below is for planning purposes only and will not
be released to anyone, including other members.

NAME------------------------~
ADDRESS _______________________ _

CITY, STATE, ZIP ___________________ _

TELEPHONE NUMBERS: HOME (

PLEASE LIST HAR~~ARE YOU OWN:

_____ __ WORK (

--- ----------------- -

OCCUPATION _________________________ _

I WOULD LIKE TO WRITE ARTICLES FOR THE NEWSLETTER (Y/N) _ __ _

I WOULD LIKE TO ASSIST ON A COMMITTEE (SPECIFY AREAS OF INTEREST IF YES) Y/N __

PLEASE ENCLOSE PAYMENT WITH THIS APPLICATION IN THE AMOUNT OF $6 FOR 6 MONTHS

MONTH JOINED _ ____ P.AID (Y /N) ___ _

MAKE CHECK OR MONEY ORDER PAYABLE TO: WASHINGTON APPLE PI

SEND TO : WASHINGTON APPLE PI
PO BOX 34511
WASHINGTON, DC 20034

Hard & Soft Facts on the Serial 110·

b y Su san Eickm eyer

The APPLE JI has a lot to ofler in Its ow n right, but
with a printer attached, or on a time sharing system, che
potenti .•l of its use incrcdses si i; nific:intly. Nost timesharing
systems, and a number of print e rs (amo ng " lot of ot h l!r pic· c c· ,,
of hardware, use a serial lucerf.i c .,, or &C'rlaJ l/O . This is
usually just a rrinted circuit card whic~ s ics in one of the
s lots .in the *11 ~1'1.£] [mo therboard, and often some as s ociated
software . On~: a~c h seria~ ~oarri, whicl1 is availabl~ tJ1rough
ELECTRONIC SY S T I M~ AS fairly inexpensive, uncomplicated and
works satlsf•cturil y for many applications. This seriaJ board,
like all othP.U - lHJl' the 'job' of sending out l n formatJ.on
one bit at a time. On this board, the bits of information arc
Bent out as volta,cs, specifically voltages which conform to
a stand a rd CdlleJ RS-232- c . The intent of this article is not
to examine that standard , thou gh, so we will leave a ny further
discussion of it to a later a rticle. What I wa nt to delve into
here is a discussion of how the APPLE) (and the S(' I i a l boa rd
interact, and look at an assembly lang uage program w~1 ich h ;; ndles
that information . The arti c le assuoes you know a little, but
no~ ve~y much about assembly language. The c onvention of using
a $ to signify hexadecimal notation will be used in t h ib
article. Before going any further, I will present the pro g r am
1 use with t he serial 1/0 board. ll jq presented below just
as it will list out on the APPLE][.

0300- AD Bl co LDA $COB!
0303- 29 80 AND II $8 O
0305- FO OE BEQ $0315
0307- AD BO co LDA $COBO
030A- 09 80 ORA P$ 8~

0 10C- C9 EO CMP 11$EO
030E- 30 02 BMl $0312
0310- 29 DF AND 11$DF
0312- 20 FO FD JSR $FDFO
0 315- 2C 00 co BI T $COOO
0318- 10 E6 BPL $0300
0 31A- AD 00 co LDA $COOO
031D- 2C 10 co BIT $C010
0320- 8D 33 03 STA $ 0333
0323- AD Bl co LDA ~r. OBl

0326- 29 01 AND . ? 01
0328- FO F9 BEQ $0323
032A- AO 33 03 LOA $0333
0320- 80 82 co STA $COB2
0330- 4C 00 03 JMP $0300

II

We'll use the p rogram listing and the accompanying flowchart
in our discussion of the serial 1/0 interface, so keep t h em
handy. Fir s t let ' s discuss how the APPLE)(communicates with
hardwar e in general. Simply put, the APPLE) (sees all hardware
d~vic~s as memory addresses. These addresses will vary
depen<llng on which port or slot the board is in, how the board
I~ conne c ted up, etc Usu~ l ly there will be a data sheet with
che hardware or board that will supply this information.
Our board is in slot 03, and according to the information on
do cumentation that came with it, there are only three addresses
with which we need to be concerned. These are:

$COBO-- INPUT
$COB1--STATUS (bit 7 : input ready I bit O: transmit empty)
$COB2--TRANSMIT BUFFER

The input add r ess will always contain the ASCII value of the
character in the input buffer, and the transmit buffer address
is where we will ' store' any characters we wa n t t o send out.

STATUS has two functions; 1-to flag ~het h er or not a character
has come into the INPUT buffer, and 2-to flag whether or not
the Transmit Buffer is ready to accept another character
for outp u t. Since the STATUS address is only handling two
'yes ' or 'no' questions, it can per f orm its 'job' by just
set t ing or not setti ng (setting a bit means making it a one)
two of the eight bits in the byte. The program must then
specifically test for those bits, and make its decision based
on them. We will see how this is done.

The diagrams below will illustrate this setup.

l (A~cil V1~~ ~1r4+ ~r'1 {c~J111:vAt~i F+;p~t) '
C.AiJ8tO INP\.tT fC082 ou.rPur

-,fJ-,.-v..-r..... ~ GI --~ ~ :rRANSmir 8UFfflt
6~~ / ~F;..:'-'---=mA•..__ __

LA . fc.o~ STATUS

Now we are ready to look at the program in detail.
To begin, we GET the STATUS byte. All we have to do to do
this is load the accumulator (LOA) with the contents at
$COB1 , which is the address which the documentation t o ld us
was the STATUS. Since we first want to find out if the board
has information ready f o r us, we need to checkthe Input ready
bit , bit seven (the high order or leftmo s t bit) of the STATUS
byte. To do th! s we use an opt<ration known as "Masking", which
is donr with the 6502 'AND' instruction. When an AND is per
fo r med on two bytes of data, corresponding bits in each are
ana l yzed, with a result of 1 if and only if both the corre s pon
ding bits are also l ' s. For any other combina t io n of bits,
t he res ul t wil l be a O. A couple of examples follow .

1011 1011
AND 0001 0010

0001 0010

f i g .l

10001001
Al;D 10000000

lCOOOOOO

01110001
A;rn 10000000

00000000

fig.2

..

Masking essentially boils down to this: We mask with
the number whose binary eq uivalent has a 'l' in and only in
the position of the bit in which we Jrc interested. In fig.2
we used the binary 10000000 to mask (A~D) This is the
same as $80, as in the program listing. Notice that $80 has
a 'l' in the 7th bit position, whicl! is the bi.t in "'hich we
are interested. Compare the two examples In figure 2 and
notice that when the 7th bit in the number to which we arc
ANDing $80 is set, we get a non-zero result. lf the 7th
bit in the other number is !1Q..1 set, we get a zerq result.
Thus, when we MASK a bit, we get zero if the bit is not set,
and non-zero if it is. In our program we use the Mask to
determine if the 7th bit is set . This tells us if there is
input f r om the external device. If the A~D returns a O
we know that there is no input, and as the flowchart sh~ws,
will go on to check the keyboard. If the result is non
zero, it indicates that there is something in the input
buffer. For now let's say that the result was non-zero,
so there is data waiting for us. We get the data by
simply loading the accumulator with the contents of the
INPUT buffer address, or LDA$COBO. We now have a form
of the ASCII value from the external device in our A-reg
ister (Accumulator). On ASCII code, the 7th bit may or
may no t be set , depending on the ex tern a 1 device . S inc e
APPLE)[requires that 7th bit to be set to avoid getting
certain 'garbage' characters, we must be sure that if it
was not already set, that it is set by the program. Again,
we must manipulate a certain bit, this time leaving all
the rest unaffected by our operation. It is possible to
do this with the ORA (OR the Accumulator) instruction.
The ORA works this way; If ei~her of the correspo n ding bits
between the accumulator and the number with which it is
ORA'd are a 1, a 1 is returned as the result . Only if both
the bits are O's will a 0 be the result. Agai n , examples:

acc.10111011
ORA 00010010
ace 10111011

fir,3

acc.10001001
ORA 10000000
nee 10001001

ace. 01110001
ORA 10000000
ace 11110001

fig 4

Figure Lt shows a n OM with $80 (binary 10000000).
When we ORA we use a number with a 1 in the binary position
which we want to set, irregardless of previous condition
in the accumulator. We used $80 whose binary has a 1 only
in the 7th bit. With the ORA instruction, the reult of the
operation is left in the accumulator, with the appropriate
bit set. Notice how all the other bits in the accumulator
stayed the same. Our accumulator now has the ASCII character
code with the high bit set, like the APPLE)[wants .

IZ

We are still not quite ready to let the APPLE)[output
its character, however, since we must first check to see if
tL~ character we received was lower case or not. The standard
APPLE)[cannot handle lowercase without software/hardware
modifications. For our program we will do it the easiest way
and merely convert the lower case letters to upper case.
Lower case ASCII characters have a higher value than upper
case letters, so we will compare our ASCII value ir the
accumulator with the smallest lower case value for an ASCII
character with the high bit set, $EO. Here we use the CMP
instruction . This instruction does a subtraction, but does
not store the result in the accumulator, as a regular
SBC ~subtract) instruction would. The CMP instruction does
set flage in o u r 6502's status register, though, and we
can find out if the result was positive, zero or negative.
Our use of the CMP will return a negative result only if
we have an upper case character. A positive or zero result
indicates we have a lower case character, and must modify
it so it is handl£d as an upper case letter by the APPLE)[.
To modify it we are going to use the AND instruction again,
only this time we are going to turn our procedure around
and use a zero to change the bit in which we are interested.
The Cifference between upper and lower case ASCII values
lies in the 5th bit. It is set in lower case, it is not set
in upper case. We need to ' unset' the fifth bit in the
lower case letter, and we will end up with an upper case.
To do this we AND with a number which has l's in all bit
positions except for the one we want to 'unset'. Since
we want to make the 5th bit a zero, we need to use the
number $DF, which has a binary value 11011111 {the 5th bit
is a zero). Below, we use the letter 'A' as an example of
the process.

Upper case A
Lower case a

$Cl
$El

binary 11000001
binary 11100001

I
5th bit

Modification ; $DF binary 11011111

lower
AND $DF

(•upper

11100001
11011111
11000001
11000001)

This modification works for all lowercase letters.
We are finally ready to let the APPLE][have the character

and output it to the screen . The APPLE monitor will do the
work for us here, all we have to do is j u mp to s ubroutine
for outputting a character to screen that exists in the
monitor at $FDFO. (JSR $FDFO). After the character has
been ou~put to the screen, the program will return to this
main program for the next step.

So far we have looked at how the APPLE] [gets a letter
from the serial I/O board, modifies it as necessary , and
outputs it to the screen. The other half of the operation
involves the APPLE)[giving the serial board a character
to transmit to the external device.

As the flowchart s hows, we must fi1st chccl the keyboard
a n d dete r mi ne whet her o r not u key has he._.n pressed, t hat is,
whether or not there is inpu t from the keyboard. ~e will use
the BI T instruction to check for input . t he BIT inst r uction
is similar to t he A~D instructio~. in thdt it also logicallv
AND ' s t he bits of th e A-register with the bits of anothe r ·
specified byte . Th e p r imary difference between an AND a n d a
BIT inst r uct i o n is that the BIT instruction does n o t s t ore
t he result of the oper~tion in th ... A-Register, while an
A~D i n st ruc t ion~o.W i th a BIT ins t ruction three things occur
which ca n b e t es t e d t o determine the result of the BIT op
e r atio n : 1) The ze ro f l ag i n th e 65 0 2 wil l be se t o r not
se t depe n ding on whether or n ot th e comparison of bits s u c
ceeds (r es ul ts i n a non- ze r o n umber). 2) The 6 th bit is
t r ansfer r ed i n to the 6502 ove r flow flag. 3) T h e 7 t h b it
of the memo r y da t a i s t r ansferred to the 'Negati v e ' f l ag i n
t h e 6502 . It i s the 3rd i t e m, that involv i ng the n egative
flag t ha t we wi ll need i n this step of the p r ogra m. I n th e
APPLE) [, The. keyb o ard is a kind of periphe r al
device which communicates with the APPLE) [,itself, through
memory locations . Two addresses are invvlved in our program,

$COOO and $C010 . Hhen a key is pressed, the ASCII
val u e of th e key can be fo u nd at $COOO . The i mporta n t point
here is tha t t he APPLE) I always sets the J11.&l! (or 7th) bit
Jn its ASCII r ep r esentation of a character. When the key
boa r d s trobe is c l eared , the high bit is ~et back to Q.
To summa r ize : if a key has been pressed since the las t time
the st r o b e was cleared , the 7th bit will he set. If oo key
has been pressed since the last time the strobe was c l eared,
the 7th bit wi l l be 0. Now, when we BIT the keyboa r d , that
7tlt bi t is trans f e rred into the N- flag (negative flag). If
t he 7th bi t was a o n e, the N-f l ag wil l be se t as a r es u l t of
the ope r a ti o n. If t he 7th bit h ad not been set, the N- flag
wou l d not be set as a r es ul t of the orcration . Hence, if a
key was p r essed, the 7th bit was set , and the N-flag will be
set as a res ult of t he BIT operation. If the N-flag is not
se t as a r es u lt of the 6 IT o p e r ation, then we know tha t no
k ey was pressed, a n d we ca n go b ack t o the star t a nd sec if
th e se r ia l I /O ca r~ ha• any inp ut for the APP L E][. T his is
exactly what we do in t he BPL i n str u ction. Th is says Bra o ch
to t he s p ecified add r ess on PLus . APPLE] [determi n ei t h a t
a nu mber i s p lu s i f t he N-f lag is not s e t .

Le t' s ass um e th a t t h e b r a n c h fa il ed, that l s t h e N- fl ag
was set (indica tin g a key ha d been pressed si n ce th e last
i n s t r u c ti o n) so we ' fell thro u g h' to the next i n s t ruction .
Here we simply l oad t he accum u lator with the cont e nt s of the
keyboard add r ess a n d get t he ASCII v a l ue f or t he c h arac t er .
Nex t we mu s t c l ea r t h e keyboa r d strobe , si n ce, if we do not ,
t he 7 th b it will s t ay se t , a n d it will look t o t h e APPL E) (
li ke t he same key i s be i ng p r essed repeatedly . We u se t he

I3

lllT instr u ct i o n again, then see a piece of ha r dwa r e "mag i c"
occ u r. All we a r e doi n g wi t h the BIT i n s truc t i o n here is
addr~ssing a locatio n . The hardware o n the keyboard can de
t e~t the fact that it has been addressed, a n d wi l l as a
r~sull, clear the keyboard strobe. Actually we could have
used any instruction involving that address and had t he same
r esult .

Our accumu lator st i ll conta i ns the ASCII va lu e from the
keyboard, but we need to u se our acc u mu l ator for somr•hing else
at the moment , so our next step is to save i t s conten t s i n a
t emporary loca t ion so we can eet them back later. In our pro
gram we wi ll store t h e ASC I I va l ue i n t h e a cc u mu la t or i n t he
l ocat i o n whic h immediate l y fo ll o ws the l as t byte of t h e p r og r a m
itself, i n $0333. We STore the co n te n ts o f the Acc u mula t o r
at $0333 with the i nstr;:;ction STA $0333 . -

I n t h e n ext seg~en t of t h e p r og r am , we will need t o t es t
o ur se ri al I /O STATUS by t e agai n. Agai n , we u se the LO A $COB 1
i n struction t o do so . Thi s time , ho weve r , we wa nt t o know ,
not whe t her the board has informa t ion fo r the APPLE)[b u t
whether the board is ready to receive some information from
~~-e APP LE] L_ What we need to find out is whethe r or n ot
t h e transmit b uf fer o n the boa r d is empty , and has room t o
r eceive a character . We c heck t h is , because if input from th e
keyboa r d is comi n g to the board too quick l y, the boa r d may
not have time to get one c ha r acter out before the APPLE) [t r ies
t o ahovc another one into it. We can see if the t r a n smit
b u ffe r on t he board is empty by testi n g bit 0 in t h e STATUS
byte (this i n formation was supplied with the board) . Agai n
we wil l use the AND instruction t o MASK fo r the bit in which
we are in t erested , so he r e we will MASK wi t h $01, or 0000000 1
bina r y. This allows us to look at the bit 0 of t he STATUS
byte, which will be set on l y of the transm i t buffe r i s empty .
If we get a z e r o as a res ul t of o u r AND ope r at io n , we wil l
b r a n c h back and test the status byte again , so we u se th e
~ranch if f_gual ins tru c t io n , BEQ $0323 . If a no n- ze r o
r esult is returned, we know that the transmit buffer is ready
t o recei v e ou r ASCII character , which is still s itting i n its
te mpora r y l oca t ion in $0333 . We ge t o ur c ha rac t e r back wi th
an LOA $0333 i nst r uctio n, then pass i t o n to t he boa rd .
Th e documentation s uppl i ed wit h t he se r ia l boa r d s a ys t h a t
t he address fo r t h e TRANS MIT BUFFE R is $COB2. To pass the
ASC II c h a r acter to the se r ia l I/O board , we n eed o nly t o
s t o r e t h e co nt e nt s o f th e A-r egis ter i n lo ca t i on $CO B2 , and
th e b oa r d wil l t ake it f r om th e r e .

At this poi n t we have t rave ll e d thro u g h o ur e ntir e pro
g r am. We have c hecked for a n d handled th e n o u tp u t a nf charac ter

sen t thr o ugh the se r ia l 1/ 0 boa r d to th e APP LE)(from
a n ~xte rn al dev i ce; a n d we ha v e a llowe d the APPLE) [to
se n d out a c h arac t er t o t h e •~t e r~al dev ice vi a the boa rd.
The only t hi n g l ef t fo r u s t o d o is t o go b a ck to t h e be -

• ..

gi nn ing o f t h" pro g r am wit h a JuMP (J;.tP) I nstruction , and
1> t a rt al l ove r f o r th e nex t cha r~tl! r tn i11p u t or output.

Ho pef ully th e l eng t h o f t h is artirlc hns not srare <l
t oo ma ny of you a way . I ts in te n t was to explain i n detail
j ust how an i n terfac i ng prog r am for a pfMc~ of hardware
worke d . Many pe r ipheral dl!vices use many nf the same routines
as were fo und in this p r ogram . lly und~rst.1ndinp, the principles
invo l ved, you may well be a ble to make modlficntlons nnd
improvements in your own device's soitwarP which will maLe
it be t ter adap t ed fo r yo u r applications.
- - - - - - - - - - - - - - - - - - -
*APP LE) [i s a r egistered t radema r k of the APP LE Compu t er Co .

- - Cupe rtin o , CA .

**Arti c l e based on the APPLE) [seria l 1/0 inte r face , availab l e
t hro ugh Elec t ron i c Systems , P . O !lox 21638 , Sa n Jose , CA .
95 151 . P r og ra m i s ba sed on a softwa r e l i sting included
i n boar d doc ume nt atio n . Ava ilab l e as board, kit or assem
b l ed ($ 1 5.00, $4 2 .00 and $6 2. 00 r espectively)

Classified ads accepted from members 50 words or less at no
charge provided the material i s obviously non-comme r cial .
Submit your clnssif ied a t least 30 days in advance a t tention
CLASSIFIED ADS, PO Box 345 1 1, Washing t on , DC 20034 .

I4

YOUR AD
REBE

' •
RATES- $20

$10
$7
$5

full
half
quarter
eighth

(l i ne copy only - no half-tones or colors)

. ,
•

Auto-List and Count
File.maker by Howie Mitchell

The following is a little program that works well and
pleases me. This program will make a iilc which
can be used to add an auto-lister to any BASIC pro
gram. It shows some influence from Bruce Togna
zinni ("Infinite Number of Monkey") . The last line
in the program (line 30026) is from the Junl' 1979
CONTACT 5. Use of the step (lines 30002 and 30004)
greatly speeds up the listing, and line 30006 g1v<?s
something to watch while the program looks for the
next line to list. Line 30005 s l ows down the li~tin~
near the end, so it doesn't overshoot. 11

10 CALL -936: VTAB 2: PRINT"•:·~·~· AUTO
LIST AND COUNT FILEMAKER **''": PRINT

20 PRINT " THIS PROGRAM WILL MAKE A
";: CALL -384: PRINT ,. FILE ";: CALL

-380: PRINT 'WHICH'
30 PRINT " CAN BE USED TO ";: CALL - 384:

PRINT "ADD";: CALL -380: PRINT "AN
AUTO-LISTER TO ANY BASIC PROGRAM."

40 PRINT: PRINT " THERE IS ONE RESTRIC
TION: ': PRINT

50 PRINT " THIS PROGRAM WILL WIPE OUT
SOME PARTS OF YOUR PROGRAM, IF THEY
LIE BETWEEN LINES 30000 TO 30027. ":
PRINT

60 PRINT " IN A MOMENT, A FILE WILL BE
MADE, CALLED: 'AUTO LIST & COUNT
FILE'.''

70 PRINT: PRINT " TO USE THE FILE:":
PRINT: PRINT " I. LOAD ANY INT, BASIC
PROGRAM."

80 PRINT "2. TYPE 'EXEC AUTO-LIST &
COUNT FILE'. "

90 PRINT " 3. TYPE 'RUN 30000 TO Rt;N AUTO
LISTER."

95 IF REP THEN POKE 34, PEEK(37): IF REP
THEN 300l5

100 INPUT" (PRESS 'RETURN' TO CONTINUE.)
", HOLD$

110 REP= I: CALL -936: GOTO 60
29999 END
30000 A.:PEEK(l.24): B=256~•PEEK(225): FIRST" At

B: DONE= ASC(''#"): IF DONEH ASC("%")
THEN 30011

30001 CALL -936: VTAB 2 : INPUT "LIST FROM
WHAT, TO WHAT", START, FINISH: PRINT

30002 INPUT "APPROX. HOW FAR APART ARE
YOUR PROGRAM LINES " , S

30003 CALL - 'l36: VTAB 3
30004 FOR X =START TO FINISH STEPS: GOSUB

30009
30005 IF (FINISH-X)1'2 •S THEN 30006: S=I: FOR

X=X+ 1 TO FINISH: GOSUB 30009
30006 Z=PEEK(37): VTAB I: TAB 20: PRINT "LIST

THRU: "; X+S-1: VTAB Z+!
30007 IF PEEK {37)}'18 THEN GOSUB 30010
30008 NEXT X: PRINT: PRINT "END OF LISTING.

":END
30009 PRINT X, X+S-1: RETURN: PRINT ·•@@":REM

"DOUBLE AT" USED AS MEMORY RE FER
ENCE FOR CHANGING PRINT TO LIST.

30010 INPUT "@",HOLD$: CALL -936: VTAB 3:
RETURN

30011 LAST=PEEK(224) + 256*PEEK(225)
300 12 FOR X =FIRST TO LAST
30013 IF PEEK(X) = ASC("@") AND PEEK(X~l)

ASC("@") THEN GOSUB 30016

30014 IF PEEK(X) = ASC("fl") THEN POKE X,ASC
("%"):REM INDICA fE "DONE IS DONE" IN
LINE 1/30000, BY REPLACIN0 ASC("fl") WITH
ASC("%") 1

30015 NEXT X: GOTO 30000
30010 POKE X-15, 116: POKE X-13, 117: RETURN:

REM CHANGE "PRINT X, X tS-1 ' TO "LIST
X, X+S- l IN LINE II 30009 !

30017 REM
30018 REM~·~·e."~~'~'******~'**"'**~:nn:;..:.,-,.;c.;c~:<"'~'~' ~:

30019 REM PROGRAM BY:
30020 REM HOWLE MITCHELL
30021 REM 7823SW. SSthPLACE
30022 REM GAINESVILLE, FLA,, 36201
30023 REM AUGUST, 1979
30024 RE)A:,!=>.'<:::>::::t~:,:::*~cft~t>:c*l!t¢*':::::**(t,;<:::):::.;:*,:'>::::;:::::;::::

30025 DIM NS(30): NS = "AUTO-LIST & COUNT
FILE": D$ = "": REM DS = "ctrl. D"

30026 PRINT DS;"OPEN ";N$: POKE 33, 33: PRINT
D$;"WR1TE '';NS: LIST 29q99, 30024: PRINT
DS; 'CLOSE": TEXT; END

SOFTJ.IARE REVIEW by Mark Crosby

3-0 softwa~e !or. the APPLE has arrived - again! SubLogic
of Savoy, 1ll1no1s has released an assembly language version
of their 30 to 20 transformation matrix/converter for the
APPLE I I.

,,side from requiring minimum memory for efficient and
e~sy- to-understand operation, the programs supplied a l ong
111 th the very good documentation and techni ca 1 manua 1 are
enough to get you up and enthused quickly.

There are 3 main programs and one den'o all supplied on one
good-quality cassette and each is repeated to assure at
least one good copy (I had no trouble with any) . The
first program is the assembly language portion 1~hich fits
from $800 to S2FFF (a total of about lOK). The other
two programs are an Integer BASIC and an Applesoft version
of their "Development" program which is used to develop
a three- dimensional scene.

After loading the assembly language, LOMEM is set to 16384
and then either BASIC program is 1 oaded and Rut/. The
development program POKE'~ code Into memory which are used
~Y the drawing a 1 go rhythm to identify points and 1 i nes
1n 30 space. It also contains many utility codes. e.g.,
a screen erase feature, a continue line code, an "eye"
from which the viewer "sees" the 30 scene , etc . All of
this code and corresponding memory locations are printed
on the screen so that you can save the "scene" or, more
specifically the coded instructions on disk or cassette
afterwards. Naturally, they can be loaded back in again
as necessary. More than one scene can be fit too with
"partitions" between them.

Multi-line scenes are drawn very quickly which means you
can get into animation too. A selective partial screen
erase feature helps in this regard - ilTlllE!nsely. Addition
ally, if you have enough memory and the proper hardware
(Applesoft Firm.-iare Card) you can use both Iii - Res pages
for "ping- panging" back and forth to smooth animation
(you can erase and re-draw one screen while displaying
another, then vice-versa).

In short, this is no run-of-the-mill 30 program rather
it is a professionally designed and complete development
oackage that should be valuable to anyone who needs 30
displays. I recorrmend it for the moderate to advanced
prograrrmer as it often requires intimate knowledge of
the internal memory map (included in the documentation
though) and machine language saves on tapes or disk and
the possibility of switching from Monitor to BASIC, etc .
Once past those "little" problems, even your kids would
have a ball in short order. There is nothing more fas
cinating than 11atching a 30 cube rotate before your very
eyes! ir

A2-301 $45 SubLogic, Box V, Savoy, IL 61874 (217) 359-8482

